<div class="csl-bib-body">
<div class="csl-entry">Cho, J., Pember, M., & Szewieczek, G. (2023). Constrained elastic curves and surfaces with spherical curvature lines. <i>Indiana University Mathematics Journal</i>, <i>72</i>(5), 2059–2099. https://doi.org/10.1512/iumj.2023.72.9487</div>
</div>
-
dc.identifier.issn
0022-2518
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192021
-
dc.description.abstract
WeIn this paper, we consider surfaces with one or two families of spherical curvature lines. We show that every surface with a family of spherical curvature lines can locally be generated by a pair of initial data: a suitable curve of Lie sphere transformations and a spherical Legendre curve. We then provide conditions on the initial data for which such a surface is Lie applicable, an integrable class of surfaces that includes cmc and pseudospherical surfaces. In particular, we show that a Lie applicable surface with exactly one family of spherical curvature lines must be generated by the lift of a constrained elastic curve in some space form. In view of this goal, we give a Lie sphere geometric characterisation of constrained elastic curves via polynomial conserved quantities of a certain family of connections.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
INDIANA UNIV MATH JOURNAL
-
dc.relation.ispartof
Indiana University Mathematics Journal
-
dc.subject
spherical curvature lines
en
dc.subject
Lie applicable surfaces
en
dc.subject
Lie sphere geometry
en
dc.subject
constrained elastic curves
en
dc.title
Constrained elastic curves and surfaces with spherical curvature lines
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of Bath, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.description.startpage
2059
-
dc.description.endpage
2099
-
dc.relation.grantno
I 3809-N32
-
dc.relation.grantno
P 28427-N35
-
dc.type.category
Original Research Article
-
tuw.container.volume
72
-
tuw.container.issue
5
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Geometrische Formerzeugung
-
tuw.project.title
Nonrigidity und Symmetriebrechung
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Indiana University Mathematics Journal
-
tuw.publication.orgunit
E104-04 - Forschungsbereich Angewandte Geometrie
-
tuw.publisher.doi
10.1512/iumj.2023.72.9487
-
dc.identifier.eissn
1943-5258
-
dc.description.numberOfPages
41
-
tuw.author.orcid
0000-0002-5634-9901
-
tuw.author.orcid
0000-0003-4016-0212
-
tuw.author.orcid
0000-0002-9584-2504
-
dc.description.sponsorshipexternal
JSPS
-
dc.description.sponsorshipexternal
MIUR
-
dc.relation.grantnoexternal
19J10679
-
dc.relation.grantnoexternal
E11G18000350001
-
wb.sci
true
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1030
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
5
-
wb.sciencebranch.value
95
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E104-04 - Forschungsbereich Angewandte Geometrie
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.orcid
0000-0002-5634-9901
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie