<div class="csl-bib-body">
<div class="csl-entry">Furutanpey, A., Raith, P. A., & Dustdar, S. (2023). <i>FrankenSplit: Efficient Neural Feature Compression with Shallow Variational Bottleneck Injection for Mobile Edge Computing</i>. arXiv. https://doi.org/10.48550/arXiv.2302.10681</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192059
-
dc.description.abstract
The rise of mobile AI accelerators allows latency-sensitive applications to execute lightweight Deep Neural Networks (DNNs) on the client side. However, critical applications require powerful models that edge devices cannot host and must therefore offload requests, where the high-dimensional data will compete for limited bandwidth. This work proposes shifting away from focusing on executing shallow layers of partitioned DNNs. Instead, it advocates concentrating the local resources on variational compression optimized for machine interpretability. We introduce a novel framework for resource-conscious compression models and extensively evaluate our method in an environment reflecting the asymmetric resource distribution between edge devices and servers. Our method achieves 60% lower bitrate than a state-of-the-art SC method without decreasing accuracy and is up to 16x faster than offloading with existing codec standards.
en
dc.language.iso
en
-
dc.publisher
arXiv
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Mobile Edge Computing
en
dc.subject
Deep Neural Networks
en
dc.subject
Artificial Intelligence
en
dc.title
FrankenSplit: Efficient Neural Feature Compression with Shallow Variational Bottleneck Injection for Mobile Edge Computing
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.arxiv
2302.10681
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.48550/arXiv.2302.10681
-
dc.identifier.libraryid
AC17202122
-
dc.description.numberOfPages
17
-
tuw.author.orcid
0000-0001-5621-7899
-
tuw.author.orcid
0000-0003-3293-9437
-
tuw.author.orcid
0000-0001-6872-8821
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.publisher.server
arXiv
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
preprint
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0000-0001-5621-7899
-
crisitem.author.orcid
0000-0003-3293-9437
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering