<div class="csl-bib-body">
<div class="csl-entry">Drmota, M., Noy, M., & Stufler, B. (2023). Cut Vertices in Random Planar Maps. <i>Electronic Journal of Combinatorics</i>, <i>30</i>(3), Article P3.32. https://doi.org/10.37236/11163</div>
</div>
-
dc.identifier.issn
1077-8926
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192070
-
dc.description.abstract
The main goal of this paper is to determine the asymptotic behavior of the number Xn of cut-vertices in random planar maps with n edges. It is shown that Xn /n → c in probability (for some explicit c > 0). For so-called subcritical classes of planar maps (like outerplanar maps) we obtain a central limit theorem, too. Inter-estingly the combinatorics behind this seemingly simple problem is quite involved.