<div class="csl-bib-body">
<div class="csl-entry">Tundo, A., Mobilio, M., Ilager, S. S., Brandic, I., Bartocci, E., & Mariani, L. (2023). An Energy-Aware Approach to Design Self-Adaptive AI-based Applications on the Edge. In <i>2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)</i> (pp. 281–293). IEEE. https://doi.org/10.1109/ASE56229.2023.00046</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192170
-
dc.description.abstract
The advent of edge devices dedicated to machine learning tasks enabled the execution of AI-based applications that efficiently process and classify the data acquired by the resource-constrained devices populating the Internet of Things. The proliferation of such applications (e.g., critical monitoring in smart cities) demands new strategies to make these systems also sustainable from an energetic point of view. In this paper, we present an energy-aware approach for the design and deployment of self-adaptive AI-based applications that can balance application objectives (e.g., accuracy in object detection and frames processing rate) with energy consumption. We address the problem of determining the set of configurations that can be used to self-adapt the system with a meta-heuristic search procedure that only needs a small number of empirical samples. The final set of configurations are selected using weighted gray relational analysis, and mapped to the operation modes of the self-adaptive application. We validate our approach on an AI-based application for pedestrian detection. Results show that our self-adaptive application can outperform non-adaptive baseline configurations by saving up to 81% of energy while loosing only between 2% and 6 % in accuracy.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
Stadt Wien
-
dc.language.iso
en
-
dc.subject
Self-Adaptation
en
dc.subject
Sustainability
en
dc.subject
AI technology solutions
en
dc.subject
Energty-aware AI
en
dc.title
An Energy-Aware Approach to Design Self-Adaptive AI-based Applications on the Edge
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Milano-Bicocca, Italy
-
dc.contributor.affiliation
University of Milano-Bicocca, Italy
-
dc.contributor.affiliation
University of Milano-Bicocca, Italy
-
dc.relation.isbn
979-8-3503-2996-4
-
dc.relation.issn
1938-4300
-
dc.description.startpage
281
-
dc.description.endpage
293
-
dc.relation.grantno
Y 904-N31
-
dc.relation.grantno
I 5201-N
-
dc.relation.grantno
P 36870-N
-
dc.relation.grantno
5G Use Case Challenge
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2643-1572
-
tuw.booktitle
2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.relation.publisherplace
Piscataway
-
tuw.project.title
Laufzeitkontrolle in Multi-Clouds
-
tuw.project.title
Nachhaltige Wasserwirtschaft durch IoT-gesteuerte KI
-
tuw.project.title
Transprecise Edge Computing
-
tuw.project.title
Erhöhung der lokalen Verkehrssicherheit durch Beobachtung der Verkehrsteilnehmer mittels 5G und Edge Computing
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publisher.doi
10.1109/ASE56229.2023.00046
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0000-0003-1178-6582
-
tuw.author.orcid
0000-0002-8004-6601
-
tuw.event.name
38th IEEE International Conference on Automated Software Engineering (ASE)
en
tuw.event.startdate
11-09-2023
-
tuw.event.enddate
15-09-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Luxembourg
-
tuw.event.country
LU
-
tuw.event.presenter
Tundo, Alessandro
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.orcid
0000-0001-8840-8948
-
crisitem.author.orcid
0000-0003-1178-6582
-
crisitem.author.orcid
0009-0007-0661-5937
-
crisitem.author.orcid
0000-0002-8004-6601
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering