<div class="csl-bib-body">
<div class="csl-entry">Ilager, S. S., De Maio, V., Lujic, I., & Brandic, I. (2023). Data-centric Edge-AI: A Symbolic Representation Use Case. In <i>2023 IEEE International Conference on Edge Computing and Communications (EDGE)</i> (pp. 301–308). IEEE. https://doi.org/10.1109/EDGE60047.2023.00052</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192177
-
dc.description.abstract
Today’s machine learning pipelines are primarily executed in the cloud, from data storage to data processing, model training, and deployment. However, machine learning is moving to edge devices, creating the demand for AI applications at the edge, known as Edge-AI. Traditional data management practices applied in the cloud are proving to be inefficient for Edge-AI, due to resource and energy constraints of edge devices and real-time requirements of applications. This paper identifies the challenges associated with data processing for Edge-AI. We then discuss methods for efficient data processing at the edge, leading to data-centric Edge-AI. As a use case scenario, we discuss the symbolic representation of time series data and explain how it could help save the cost of data storage and processing in developing Edge-AI applications.
de
dc.language.iso
en
-
dc.subject
Computing
en
dc.subject
Edge Computing
en
dc.subject
Edge AI
en
dc.title
Data-centric Edge-AI: A Symbolic Representation Use Case
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Ericsson (Croatia), Croatia
-
dc.relation.isbn
979-8-3503-0483-1
-
dc.description.startpage
301
-
dc.description.endpage
308
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2023 IEEE International Conference on Edge Computing and Communications (EDGE)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.relation.publisherplace
Piscataway
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
30
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publisher.doi
10.1109/EDGE60047.2023.00052
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0003-1178-6582
-
tuw.author.orcid
0000-0002-7352-3895
-
tuw.author.orcid
0000-0002-8564-6040
-
tuw.event.name
2023 IEEE International Conference on Edge Computing and Communications (EDGE)
en
tuw.event.startdate
02-07-2023
-
tuw.event.enddate
08-07-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Chicago
-
tuw.event.country
US
-
tuw.event.presenter
Ilager, Shashikant Shankar
-
tuw.presentation.online
Online
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0003-1178-6582
-
crisitem.author.orcid
0000-0002-7352-3895
-
crisitem.author.orcid
0000-0002-8564-6040
-
crisitem.author.orcid
0009-0007-0661-5937
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering