<div class="csl-bib-body">
<div class="csl-entry">Bologheanu, R., Kapral, L., Laxar, D., Maleczek, M., Dibiasi, C., Zeiner, S., Agibetov, A., Ercole, A., Thoral, P., Elbers, P., Clemens Heitzinger, & Kimberger, O. (2023). Development of a reinforcement learning algorithm to optimize corticosteroid therapy in critically ill patients with sepsis. <i>Journal of Clinical Medicine</i>, <i>12</i>(4), Article 1513. https://doi.org/10.3390/jcm12041513</div>
</div>
-
dc.identifier.issn
2077-0383
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192181
-
dc.description.abstract
Background: The optimal indication, dose, and timing of corticosteroids in sepsis is controversial. Here, we used reinforcement learning to derive the optimal steroid policy in septic patients based on data on 3051 ICU admissions from the AmsterdamUMCdb intensive care database. Methods: We identified septic patients according to the 2016 consensus definition. An actor-critic RL algorithm using ICU mortality as a reward signal was developed to determine the optimal treatment policy from time-series data on 277 clinical parameters. We performed off-policy evaluation and testing in independent subsets to assess the algorithm’s performance. Results: Agreement between the RL agent’s policy and the actual documented treatment reached 59\%. Our RL agent’s treatment policy was more restrictive compared to the actual clinician behavior: our algorithm suggested withholding corticosteroids in 62\% of the patient states, versus 52\% according to the physicians’ policy. The 95\% lower bound of the expected reward was higher for the RL agent than clinicians’ historical decisions. ICU mortality after concordant action in the testing dataset was lower both when corticosteroids had been withheld and when corticosteroids had been prescribed by the virtual agent. The most relevant variables were vital parameters and laboratory values, such as blood pressure, heart rate, leucocyte count, and glycemia. Conclusions: Individualized use of corticosteroids in sepsis may result in a mortality benefit, but optimal treatment policy may be more restrictive than the routine clinical practice. Whilst external validation is needed, our study motivates a ‘precision-medicine’ approach to future prospective controlled trials and practice.
en
dc.language.iso
en
-
dc.publisher
MDPI
-
dc.relation.ispartof
Journal of Clinical Medicine
-
dc.subject
sepsis
en
dc.subject
corticosteroids
en
dc.subject
outcomes
en
dc.subject
artificial intelligence
en
dc.subject
reinforcement learning
en
dc.title
Development of a reinforcement learning algorithm to optimize corticosteroid therapy in critically ill patients with sepsis
en
dc.type
Article
en
dc.type
Artikel
de
dc.identifier.url
https://doi.org/10.3390/jcm12041513
-
dc.contributor.affiliation
Medical University of Vienna, Austria
-
dc.contributor.affiliation
Ludwig Boltzmann Institute for Digital Health and Patient Safety, 1090 Vienna, Austria
-
dc.contributor.affiliation
Ludwig Boltzmann Institute for Digital Health and Patient Safety; Medical University of Vienna
-
dc.contributor.affiliation
Medical University of Vienna, Austria
-
dc.contributor.affiliation
Medical University of Vienna, Austria
-
dc.contributor.affiliation
Medical University of Vienna, Austria
-
dc.contributor.affiliation
University of Cambridge
-
dc.contributor.affiliation
Amsterdam UMC Location VUmc, Netherlands (the)
-
dc.contributor.affiliation
Amsterdam University Medical Centers, Netherlands (the)
-
dc.contributor.affiliation
Medical University of Vienna, Austria
-
dc.type.category
Original Research Article
-
tuw.container.volume
12
-
tuw.container.issue
4
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchinfrastructure
Analytical Instrumentation Center
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of Clinical Medicine
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
tuw.publisher.doi
10.3390/jcm12041513
-
dc.identifier.articleid
1513
-
dc.identifier.eissn
2077-0383
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0000-0002-6163-677X
-
tuw.author.orcid
0000-0003-4059-9647
-
tuw.author.orcid
0000-0002-1431-0742
-
tuw.author.orcid
0000-0002-2270-0089
-
tuw.author.orcid
0000-0001-8329-6940
-
tuw.author.orcid
0000-0003-0096-0143
-
tuw.author.orcid
0000-0001-8350-8093
-
tuw.author.orcid
0000-0001-6140-7195
-
tuw.author.orcid
0000-0003-0447-6893
-
tuw.author.orcid
0000-0002-9766-1360
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
50
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairetype
research article
-
crisitem.author.dept
Medical University of Vienna
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
Ludwig Boltzmann Institute for Digital Health and Patient Safety, 1090 Vienna, Austria
-
crisitem.author.dept
Ludwig Boltzmann Institute for Digital Health and Patient Safety; Medical University of Vienna
-
crisitem.author.dept
Medical University of Vienna
-
crisitem.author.dept
Medical University of Vienna
-
crisitem.author.dept
Medical University of Vienna
-
crisitem.author.dept
University of Cambridge
-
crisitem.author.dept
Amsterdam UMC Location VUmc
-
crisitem.author.dept
Amsterdam University Medical Centers
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
Medical University of Vienna
-
crisitem.author.orcid
0000-0002-6163-677X
-
crisitem.author.orcid
0000-0003-4059-9647
-
crisitem.author.orcid
0000-0002-1431-0742
-
crisitem.author.orcid
0000-0002-2270-0089
-
crisitem.author.orcid
0000-0001-8329-6940
-
crisitem.author.orcid
0000-0003-0096-0143
-
crisitem.author.orcid
0000-0001-8350-8093
-
crisitem.author.orcid
0000-0001-6140-7195
-
crisitem.author.orcid
0000-0003-0447-6893
-
crisitem.author.orcid
0000-0002-9766-1360
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering