<div class="csl-bib-body">
<div class="csl-entry">Ruzicka, L., Dominik Söllinger, Kohn, B., Heitzinger, C., Uhl, A., & Strobl, B. (2023). Improving sensor interoperability between contactless and contact-based fingerprints using pose correction and unwarping. <i>IET Biometrics</i>, <i>2023</i>, Article 7519499. https://doi.org/10.1049/2023/7519499</div>
</div>
-
dc.identifier.issn
2047-4938
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192190
-
dc.description.abstract
Current fingerprint identification systems face significant challenges in achieving interoperability between contact-based and contactless fingerprint sensors. In contrast to existing literature, we propose a novel approach that can combine pose correction with further enhancement operations. It uses deep learning models to steer the correction of the viewing angle, therefore enhancing the matching features of contactless fingerprints. The proposed approach was tested on real data of 78 participants (37,162 contactless fingerprints) acquired by national police officers using both contact-based and contactless sensors. The study found that the effectiveness of pose correction and unwarping varied significantly based on the individual characteristics of each fingerprint. However, when the various extension methods were combined on a finger-wise basis, an average decrease of 36.9% in equal error rates (EERs) was observed. Additionally, the combined impact of pose correction and bidirectional unwarping led to an average increase of 3.72% in NFIQ 2 scores across all fingers, coupled with a 6.4% decrease in EERs relative to the baseline. The addition of deep learning techniques presents a promising approach for achieving high-quality fingerprint acquisition using contactless sensors, enhancing recognition accuracy in various domains.
en
dc.language.iso
en
-
dc.publisher
WILEY-HINDAWI
-
dc.relation.ispartof
IET Biometrics
-
dc.subject
fingerprint identification
en
dc.title
Improving sensor interoperability between contactless and contact-based fingerprints using pose correction and unwarping
en
dc.type
Article
en
dc.type
Artikel
de
dc.identifier.url
https://doi.org/10.1049/2023/7519499
-
dc.contributor.affiliation
University of Salzburg, Austria
-
dc.contributor.affiliation
Austrian Institute of Technology, Austria
-
dc.contributor.affiliation
University of Salzburg, Austria
-
dc.contributor.affiliation
Austrian Institute of Technology, Austria
-
dc.type.category
Original Research Article
-
tuw.container.volume
2023
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
IET Biometrics
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
tuw.publisher.doi
10.1049/2023/7519499
-
dc.identifier.articleid
7519499
-
dc.identifier.eissn
2047-4946
-
dc.description.numberOfPages
16
-
wb.sci
true
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1030
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
50
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E130 - Fakultät für Physik
-
crisitem.author.dept
University of Salzburg
-
crisitem.author.dept
Austrian Institute of Technology
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
University of Salzburg
-
crisitem.author.dept
Austrian Institute of Technology
-
crisitem.author.parentorg
E000 - Technische Universität Wien
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering