<div class="csl-bib-body">
<div class="csl-entry">Rabbani, K., Lissandrini, M., & Hose, K. (2023). SHACTOR: Improving the Quality of Large-Scale Knowledge Graphs with Validating Shapes. In <i>Companion of the 2023 International Conference on Management of Data</i> (pp. 151–154). https://doi.org/10.1145/3555041.3589723</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192201
-
dc.description.abstract
We demonstrate SHACTOR, a system for extracting and analyzing validating shapes from very large Knowledge Graphs (KGs). Shapes represent a specific form of data patterns, akin to schemas for entities. Standard shape extraction approaches are likely to produce thousands of shapes, and some of those represent spurious constraints extracted due to the presence of erroneous data in the KG. Given a KG having tens of millions of triples and thousands of classes, SHACTOR parses the KG using our efficient and scalable shapes extraction algorithm and outputs SHACL shapes constraints. The extracted shapes are further annotated with statistical information regarding their support in the graph, which allows to identify both erroneous and missing triples in the KG. Hence, SHACTOR can be used to extract, analyze, and clean shape constraints from very large KGs. Furthermore, it enables the user to also find and correct errors by automatically generating SPARQL queries over the graph to retrieve nodes and facts that are the source of the spurious shapes and to intervene by amending the data.
en
dc.language.iso
en
-
dc.subject
knowledge graphs
en
dc.subject
quality assessment
en
dc.subject
SHACL
en
dc.subject
shapes extraction
en
dc.subject
Analyze
en
dc.subject
SPARQL
en
dc.subject
Data
en
dc.title
SHACTOR: Improving the Quality of Large-Scale Knowledge Graphs with Validating Shapes
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
9781450395076
-
dc.description.startpage
151
-
dc.description.endpage
154
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Companion of the 2023 International Conference on Management of Data
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.1145/3555041.3589723
-
dc.description.numberOfPages
4
-
tuw.author.orcid
0000-0002-6984-2121
-
tuw.author.orcid
0000-0001-7922-5998
-
tuw.author.orcid
0000-0001-7025-8099
-
tuw.event.name
SIGMOD/PODS '23: International Conference on Management of Data
en
tuw.event.startdate
18-06-2023
-
tuw.event.enddate
23-06-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Seattle, WA
-
tuw.event.country
US
-
tuw.event.presenter
Lissandrini, Matteo
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
Aalborg University, Denmark
-
crisitem.author.dept
University of Verona, Italy
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence