<div class="csl-bib-body">
<div class="csl-entry">Ashury, M., Gerstoft, P., Mecklenbräuker, C. F., & Lungenschmied, D. (2023). Channel Estimation for FMCW Radar with Sparse Bayesian Learning. In <i>Proceedings 2023 IEEE Conference on Antenna Measurements and Applications 2023 IEEE Conference on Antenna Measurements and Applications (CAMA)</i> (pp. 266–270). https://doi.org/10.1109/CAMA57522.2023.10352684</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192230
-
dc.description.abstract
Automotive Millimeter-wave (mmWave) radar is an essential part of Advanced Driver Assistance Systems (ADAS), with fast-developing applications. Knowledge of the mmWave propagation channel characteristics is essential for designing a robust and reliable automotive radar system. In this contribution the Frequency Modulated Continuous-Wave (FMCW) Radar propagation channel is measured in laboratory conditions. Sparse Bayesian Learning (SBL) is used for post-processing of the obtained measurement data.
en
dc.language.iso
en
-
dc.subject
wireless channel
en
dc.subject
Automotive sensors
en
dc.subject
sparse Bayesian learning
en
dc.title
Channel Estimation for FMCW Radar with Sparse Bayesian Learning
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of California, San Diego, United States of America (the)
-
dc.contributor.affiliation
Infineon Technologies (Austria), Austria
-
dc.relation.isbn
979-8-3503-2304-7
-
dc.description.startpage
266
-
dc.description.endpage
270
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings 2023 IEEE Conference on Antenna Measurements and Applications 2023 IEEE Conference on Antenna Measurements and Applications (CAMA)