Malissa, A., Cappa, F., Schreiner, M., & Marchetti-Deschmann, M. (2023). Spectral Features Differentiate Aging-Induced Changes in Parchment-A Combined Approach of UV/VIS, µ-ATR/FTIR and µ-Raman Spectroscopy with Multivariate Data Analysis. Molecules, 28(12), Article 4584. https://doi.org/10.3390/molecules28124584
From the moment of production, artworks are constantly exposed to changing environmental factors potentially inducing degradation. Therefore, detailed knowledge of natural degradation phenomena is essential for proper damage assessment and preservation. With special focus on written cultural heritage, we present a study on the degradation of sheep parchment employing accelerated aging with light (295-3000 nm) for one month, 30/50/80% relative humidity (RH) and 50 ppm sulfur dioxide with 30/50/80%RH for one week. UV/VIS spectroscopy detected changes in the sample surface appearance, showing browning after light-aging and increased brightness after SO2-aging. Band deconvolution of ATR/FTIR and Raman spectra and factor analysis of mixed data (FAMD) revealed characteristic changes of the main parchment components. Spectral features for degradation-induced structural changes of collagen and lipids turned out to be different for the employed aging parameters. All aging conditions induced denaturation (of different degrees) indicated by changes in the secondary structure of collagen. Light treatment resulted in the most pronounced changes for collagen fibrils in addition to backbone cleavage and side chain oxidations. Additional increased disorder for lipids was observed. Despite shorter exposure times, SO2-aging led to a weakening of protein structures induced by transitions of stabilizing disulfide bonds and side chain oxidations.
en
Projekttitel:
Entwicklung einer multimodalen Analysestrategie zur Untersuchung von Pergamentalterung: 25800 (Österr. Akademie der Wissenschaften)