<div class="csl-bib-body">
<div class="csl-entry">Gaetz, C., Pechenik, O., Pfannerer-Mittas, S. H., Jessica, S., & Swanson, J. P. (2023). An SL₄-web basis from hourglass plabic graphs. In <i>Proceedings of the 35th International Conference on “Formal Power Series and Algebraic Combinatorics.”</i> 35th International Conference on Formal Power Series & Algebraic Combinatorics (FPSAC 2023), Davis, California, United States of America (the). http://hdl.handle.net/20.500.12708/192483</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192483
-
dc.description.abstract
We introduce hourglass plabic graphs and prove that certain of these graphs index a rotation-invariant SL4-web basis, a structure that has been sought since Kuperberg's introduction of the SL3-web basis in 1996. These graphs exhibit connections to the combinatorics of standard Young tableaux, crystals, alternating sign matrices, six-vertex configurations, and plane partitions.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
Österr. Akademie der Wissenschaften
-
dc.language.iso
en
-
dc.subject
web
en
dc.subject
promotion
en
dc.subject
plabic graph
en
dc.subject
alternating sign matrix
en
dc.subject
six-vertex model
en
dc.title
An SL₄-web basis from hourglass plabic graphs
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Cornell University, USA
-
dc.contributor.affiliation
University of Waterloo, Canada
-
dc.contributor.affiliation
North Dakota State University, USA
-
dc.contributor.affiliation
University of Southern California, United States of America (the)
-
dc.relation.grantno
P29275-N35
-
dc.relation.grantno
25658
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 35th International Conference on "Formal Power Series and Algebraic Combinatorics"
-
tuw.container.volume
89B
-
tuw.book.chapter
9
-
tuw.publication.invited
invited
-
tuw.project.title
Das Phänomen des zyklischen Siebens
-
tuw.project.title
Rotationsinvariante diagrammatische Basen für Invariantenräume