<div class="csl-bib-body">
<div class="csl-entry">Zhongbin, X., Kocijan, V., Lukasiewicz, T., & Camburu, O.-M. (2023). Counter−GAP: Counterfactual Bias Evaluation through Gendered Ambiguous Pronouns. In A. Vlachos & Isabelle Augenstein (Eds.), <i>Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics</i> (pp. 3761–3773). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.eacl-main.272</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192484
-
dc.description.abstract
Bias-measuring datasets play a critical role in detecting biased behavior of language models and in evaluating progress of bias mitigation methods. In this work, we focus on evaluating gender bias through coreference resolution, where previous datasets are either hand-crafted or fail to reliably measure an explicitly defined bias. To overcome these shortcomings, we propose a novel method to collect diverse, natural, and minimally distant text pairs via counterfactual generation, and construct Counter-GAP, an annotated dataset consisting of 4008 instances grouped into 1002 quadruples. We further identify a bias cancellation problem in previous group-level metrics on Counter-GAP, and propose to use the difference between inconsistency across genders and within genders to measure bias at a quadruple level. Our results show that four pre-trained language models are significantly more inconsistent across different gender groups than within each group, and that a name-based counterfactual data augmentation method is more effective to mitigate such bias than an anonymization-based method.
en
dc.language.iso
en
-
dc.subject
bias-measuring datasets
en
dc.subject
gender bias
en
dc.subject
coreference resolution
en
dc.title
Counter−GAP: Counterfactual Bias Evaluation through Gendered Ambiguous Pronouns
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
-
dc.contributor.affiliation
University of Oxford, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
University of Oxford, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
University College London, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.relation.isbn
978-1-959429-44-9
-
dc.relation.doi
10.18653/v1/2023.eacl-main
-
dc.description.startpage
3761
-
dc.description.endpage
3773
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics