<div class="csl-bib-body">
<div class="csl-entry">Frohner, N., Raidl, G., & Chicano, F. (2023). Multi-Objective Policy Evolution for a Same-Day Delivery Problem with Soft Deadlines. In <i>GECCO ’23 Companion: Proceedings of the Companion Conference on Genetic and Evolutionary Computation</i> (pp. 1941–1949). Association for Computing Machinery. https://doi.org/10.1145/3583133.3596381</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192594
-
dc.description.abstract
Same-day delivery problems (SDDPs) deal with efficient near-term satisfaction of dynamic and stochastic customer demand. During the day, a sequence of decisions has to be performed related to delivery route construction and driver dispatching. Formulated as Markov decision process, the goal is to find a policy that maximizes the expected reward over a specified class of instances. In the literature, scalar reward functions have dominated so far, by either considering only one objective or several objectives transformed into one using a weighted sum or lexicographic order. In this work, we consider a vector-valued reward with two dimensions, tardiness and costs, for a real-world inspired SDDP with tight soft deadlines within hours. The goal is to evolve non-dominated sets of policies for typical days with a certain stochastic load pattern and geographical order distribution in advance and let the decision maker select which one to deploy. We achieve this utilizing classical multi-objective genetic algorithms, NSGA-II and SPEA2, and by parallelization of the computationally intensive policy evaluations. Based on the experimental results, we observe that accepting a small amount of additional tardiness initially leads to a substantial return in terms of reduced mean delivery times per order.
en
dc.language.iso
en
-
dc.subject
dynamic vehicle routing with stochastic customers
en
dc.subject
Multi-objective same-day delivery
en
dc.subject
policy evolution
en
dc.title
Multi-Objective Policy Evolution for a Same-Day Delivery Problem with Soft Deadlines
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Universidad de Málaga, Spain
-
dc.relation.isbn
9798400701207
-
dc.description.startpage
1941
-
dc.description.endpage
1949
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
GECCO '23 Companion: Proceedings of the Companion Conference on Genetic and Evolutionary Computation
-
tuw.relation.publisher
Association for Computing Machinery
-
tuw.relation.publisherplace
New York
-
tuw.book.chapter
GECCO '23 Companion: Proceedings of the Companion Conference on Genetic and Evolutionary Computation
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.1145/3583133.3596381
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0002-0629-9379
-
tuw.author.orcid
0000-0002-3293-177X
-
tuw.author.orcid
0000-0003-1259-2990
-
tuw.event.name
GECCO 2023: Genetic and Evolutionary Computation Conference
en
tuw.event.startdate
15-07-2023
-
tuw.event.enddate
19-07-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Lisbon
-
tuw.event.country
PT
-
tuw.event.presenter
Frohner, Nikolaus
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity