<div class="csl-bib-body">
<div class="csl-entry">Ghafourian, Y., Hanbury, A., & Knoth, P. (2023). Readability Measures as Predictors of Understandability and Engagement in Searching to Learn. In O. Alonso, H. Cousijn, G. Silvello, M. Marrero, C. T. Lopes, & S. MARCHESIN (Eds.), <i>Linking Theory and Practice of Digital Libraries: 27th International Conference on Theory and Practice of Digital Libraries, TPDL 2023, Zadar, Croatia, September 26–29, 2023, Proceedings</i> (pp. 173–181). Springer. https://doi.org/10.1007/978-3-031-43849-3_15</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192599
-
dc.description.abstract
Search engines have become essential tools for learning, providing access to vast amounts of educational resources. However, selecting the most suitable resources from numerous options can be challenging for learners. While search engines primarily rank resources based on topical relevance, factors like understandability and engagement are crucial for effective learning as well. Understandability, a key aspect of text, is often associated with readability. This study evaluates eight commonly used readability measures to determine their effectiveness in predicting understandability, engagement, topical relevance, and user-assigned ranks. The empirical evaluation employs a survey-based methodology, collecting explicit relevance feedback from participants regarding their preferences for learning from web pages. The relevance data was then analyzed concerning the readability measures. The findings highlight that readability measures are not only reliable predictors of understandability but also of engagement. Specifically, the FKGL and GFI measures demonstrate the highest and most consistent correlation with perceived understandability and engagement. This research provides valuable insights for selecting effective readability measures to tailor search results to the users’ learning needs.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.subject
Empirical Evaluation
en
dc.subject
Engagement
en
dc.subject
Readability Measures
en
dc.subject
Relevance
en
dc.subject
Understandability
en
dc.subject
User Study
en
dc.title
Readability Measures as Predictors of Understandability and Engagement in Searching to Learn
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
Linking Theory and Practice of Digital Libraries: 27th International Conference on Theory and Practice of Digital Libraries, TPDL 2023, Zadar, Croatia, September 26–29, 2023, Proceedings
-
dc.contributor.affiliation
Research Studios Austria, Austria
-
dc.contributor.affiliation
The Open University, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.editoraffiliation
DataCite, Germany
-
dc.relation.isbn
978-3-031-43849-3
-
dc.relation.doi
10.1007/978-3-031-43849-3
-
dc.relation.issn
0302-9743
-
dc.description.startpage
173
-
dc.description.endpage
181
-
dc.relation.grantno
860721
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Linking Theory and Practice of Digital Libraries: 27th International Conference on Theory and Practice of Digital Libraries, TPDL 2023, Zadar, Croatia, September 26–29, 2023, Proceedings
-
tuw.container.volume
14241
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.project.title
Domänen-spezifische Systeme für Informationsextraktion und -suche
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publisher.doi
10.1007/978-3-031-43849-3_15
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0001-9683-9748
-
tuw.author.orcid
0000-0002-7149-5843
-
tuw.author.orcid
0000-0003-1161-7359
-
tuw.editor.orcid
0000-0001-6660-6214
-
tuw.editor.orcid
0000-0003-0362-5893
-
tuw.event.name
27th International Conference on Theory and Practice of Digital Libraries (TPDL 2023)
en
tuw.event.startdate
26-09-2023
-
tuw.event.enddate
29-09-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Zadar
-
tuw.event.country
HR
-
tuw.event.presenter
Ghafourian, Yasin
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
The Open University
-
crisitem.author.orcid
0000-0001-9683-9748
-
crisitem.author.orcid
0000-0002-7149-5843
-
crisitem.author.orcid
0000-0003-1161-7359
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering