<div class="csl-bib-body">
<div class="csl-entry">Müllner, J., Moosbrugger, M., & Kovács, L. (2024). Strong Invariants Are Hard: On the Hardness of Strongest Polynomial Invariants for (Probabilistic) Programs. <i>Proceedings of the ACM on Programming Languages</i>, <i>8</i>(POPL), 882–910. https://doi.org/10.1145/3632872</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192604
-
dc.description.abstract
We show that computing the strongest polynomial invariant for single-path loops with polynomial assignments is at least as hard as the Skolem problem, a famous problem whose decidability has been open for almost a century. While the strongest polynomial invariants are computable for affine loops, for polynomial loops the problem remained wide open. As an intermediate result of independent interest, we prove that reachability for discrete polynomial dynamical systems is Skolem-hard as well. Furthermore, we generalize the notion of invariant ideals and introduce moment invariant ideals for probabilistic programs. With this tool, we further show that the strongest polynomial moment invariant is (i) uncomputable, for probabilistic loops with branching statements, and (ii) Skolem-hard to compute for polynomial probabilistic loops without branching statements. Finally, we identify a class of probabilistic loops for which the strongest polynomial moment invariant is computable and provide an algorithm for it.
en
dc.language.iso
en
-
dc.publisher
Association for Computing Machinery (ACM)
-
dc.relation.ispartof
Proceedings of the ACM on Programming Languages
-
dc.subject
Strongest algebraic invariant
en
dc.subject
Point-To-Point reachability
en
dc.subject
Skolem problem
en
dc.subject
Probabilistic programs
en
dc.title
Strong Invariants Are Hard: On the Hardness of Strongest Polynomial Invariants for (Probabilistic) Programs
en
dc.type
Article
en
dc.type
Artikel
de
dc.description.startpage
882
-
dc.description.endpage
910
-
dc.type.category
Original Research Article
-
tuw.container.volume
8
-
tuw.container.issue
POPL
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
70
-
dcterms.isPartOf.title
Proceedings of the ACM on Programming Languages
-
tuw.publication.orgunit
E192-04 - Forschungsbereich Formal Methods in Systems Engineering
-
tuw.publisher.doi
10.1145/3632872
-
dc.date.onlinefirst
2024
-
dc.identifier.articleid
30
-
dc.identifier.eissn
2475-1421
-
dc.description.numberOfPages
29
-
tuw.author.orcid
0000-0002-2006-3741
-
tuw.author.orcid
0000-0002-8299-2714
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E192-04 - Forschungsbereich Formal Methods in Systems Engineering
-
crisitem.author.dept
E192-04 - Forschungsbereich Formal Methods in Systems Engineering