<div class="csl-bib-body">
<div class="csl-entry">Kusa, W., Mendoza, Ó. E., Samwald, M., Knoth, P., & Hanbury, A. (2023). CSMeD: Bridging the Dataset Gap in Automated Citation Screening for Systematic Literature Reviews. In <i>37th Conference on Neural Information Processing Systems (NeurIPS 2023), Datasets and Benchmarks Track</i> (pp. 1–17). http://hdl.handle.net/20.500.12708/192629</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192629
-
dc.description.abstract
Systematic literature reviews (SLRs) play an essential role in summarising, synthesising and validating scientific evidence. In recent years, there has been a growing interest in using machine learning techniques to automate the identification of relevant studies for SLRs. However, the lack of standardised evaluation datasets makes comparing the performance of such automated literature screening systems difficult. In this paper, we analyse the citation screening evaluation datasets, revealing that many of the available datasets are either too small, suffer from data leakage or have limited applicability to systems treating automated literature screening as a classification task, as opposed to, for example, a retrieval or question-answering task. To address these challenges, we introduce CSMED, a meta-dataset consolidating nine publicly released collections, providing unified access to 325 SLRs from the fields of medicine and computer science. CSMED serves as a comprehensive resource for training and evaluating the performance of automated citation screening models. Additionally, we introduce CSMED-FT, a new dataset designed explicitly for evaluating the full text publication screening task. To demonstrate the utility of CSMED, we conduct experiments and establish baselines on new datasets.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.subject
SLR
en
dc.subject
evaluation
en
dc.subject
NLP
en
dc.subject
citation screening
en
dc.subject
meta-dataset
en
dc.subject
systematic reviews
en
dc.title
CSMeD: Bridging the Dataset Gap in Automated Citation Screening for Systematic Literature Reviews
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Milano-Bicocca, Italy
-
dc.contributor.affiliation
Medical University of Vienna, Austria
-
dc.contributor.affiliation
The Open University, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.description.startpage
1
-
dc.description.endpage
17
-
dc.relation.grantno
860721
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
37th Conference on Neural Information Processing Systems (NeurIPS 2023), Datasets and Benchmarks Track
-
tuw.peerreviewed
true
-
tuw.project.title
Domänen-spezifische Systeme für Informationsextraktion und -suche
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.linking
https://openreview.net/pdf?id=ZbmS3MU25p
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
dc.description.numberOfPages
17
-
tuw.author.orcid
0000-0003-4420-4147
-
tuw.author.orcid
0000-0003-2725-2972
-
tuw.author.orcid
0000-0002-4855-2571
-
tuw.author.orcid
0000-0003-1161-7359
-
tuw.author.orcid
0000-0002-7149-5843
-
tuw.event.name
37th Annual Conference on Neural Information Processing Systems
en
tuw.event.startdate
10-12-2023
-
tuw.event.enddate
16-12-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
New Orleans
-
tuw.event.country
US
-
tuw.event.presenter
Kusa, Wojciech
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
crisitem.project.funder
European Commission
-
crisitem.project.grantno
860721
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
University of Milano-Bicocca
-
crisitem.author.dept
E188 - Institut für Softwaretechnik und Interaktive Systeme
-
crisitem.author.dept
The Open University
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0003-4420-4147
-
crisitem.author.orcid
0000-0003-2725-2972
-
crisitem.author.orcid
0000-0003-1161-7359
-
crisitem.author.orcid
0000-0002-7149-5843
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E180 - Fakultät für Informatik
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering