<div class="csl-bib-body">
<div class="csl-entry">Kovacs, L. (2023). Algebraic Reasoning for (Un)Solvable Loops (Invited Talk). In J. Leroux, S. Lombardy, & D. Peleg (Eds.), <i>48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)</i> (pp. 4:1-4:2). Schloss-Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPICS.MFCS.2023.4</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192673
-
dc.description.abstract
Loop invariants describe valid program properties that hold before and after every loop iteration. As such, loop invariants are the workhorses in formalizing loop semantics and automating the formal analysis and verification of programs with loops. While automatically synthesizing loop invariants is, in general, an uncomputable problem, when considering only single-path loops with linear updates (linear loops), the strongest polynomial invariant is in fact computable [Michael Karr, 1976; Markus Müller-Olm and Helmut Seidl, 2004; Laura Kovács, 2008; Ehud Hrushovski et al., 2018]. Yet, already for loops with "only" polynomial updates, computing the strongest invariant has been an open challenge since 2004 [Markus Müller-Olm and Helmut Seidl, 2004]. In this invited talk, we first present computability results on polynomial invariant synthesis for restricted polynomial loops, called solvable loops [Rodríguez-Carbonell and Kapur, 2004]. Key to solvable loops is that one can automatically compute invariants from closed-form solutions of algebraic recurrence equations that model the loop behaviour [Laura Kovács, 2008; Andreas Humenberger et al., 2017]. We also establish a technique for invariant synthesis for classes of loops that are not solvable, termed unsolvable loops [Daneshvar Amrollahi et al., 2022]. We next study the limits of computability in deriving the (strongest) polynomial invariants for arbitrary polynomial loops. We prove that computing the strongest polynomial invariant of arbitrary, single-path polynomial loops is very hard [Julian Müllner, 2023] - namely, it is at least as hard as the Skolem problem [Graham Everest et al., 2003; Terrence Tao, 2008], a prominent algebraic problem in the theory of linear recurrences. Going beyond single-path loops, we show that the strongest polynomial invariant is uncomputable already for multi-path polynomial loops with arbitrary quadratic polynomial updates
en
dc.description.sponsorship
ERC Consolidator Grant 2020
-
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.relation.ispartofseries
Leibniz International Proceedings in Informatics
-
dc.subject
program analysis
en
dc.subject
recurrences
-
dc.subject
Skolem problem
-
dc.subject
loop invariants
-
dc.title
Algebraic Reasoning for (Un)Solvable Loops (Invited Talk)
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.editoraffiliation
Université de Bordeaux, France
-
dc.contributor.editoraffiliation
Université de Bordeaux, France
-
dc.contributor.editoraffiliation
Weizmann Institute of Science, Israel
-
dc.relation.isbn
978-3-95977-292-1
-
dc.description.startpage
4:1
-
dc.description.endpage
4:2
-
dc.relation.grantno
101002685,
-
dc.relation.grantno
ICT19-018
-
dc.type.category
Keynote Contribution
-
tuw.booktitle
48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)
-
tuw.container.volume
272
-
tuw.book.ispartofseries
Leibniz International Proceedings in Informatics (LIPIcs)
-
tuw.relation.publisher
Schloss-Dagstuhl - Leibniz Zentrum für Informatik
-
tuw.publication.invited
invited
-
tuw.project.title
Automated Reasoning with Theories and Induction for Software Technologies
-
tuw.project.title
Distribution Recovery for Invariant Generation of Probabilistic Programs
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-04 - Forschungsbereich Formal Methods in Systems Engineering
-
tuw.publisher.doi
10.4230/LIPICS.MFCS.2023.4
-
dc.description.numberOfPages
2
-
tuw.author.orcid
0000-0002-8299-2714
-
tuw.editor.orcid
0000-0002-7214-9467
-
tuw.editor.orcid
0000-0003-2738-8175
-
tuw.editor.orcid
0000-0003-1590-0506
-
tuw.event.name
48th International Symposium on Mathematical Foundations of Computer Science (MFCS)
en
tuw.event.startdate
28-08-2023
-
tuw.event.enddate
01-09-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Bordeaux
-
tuw.event.country
FR
-
tuw.event.presenter
Kovacs, Laura
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
crisitem.author.dept
E192-04 - Forschungsbereich Formal Methods in Systems Engineering
-
crisitem.author.orcid
0000-0002-8299-2714
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.project.funder
European Commission
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds