<div class="csl-bib-body">
<div class="csl-entry">Ostrowski, E., & Shafique, M. (2023). ISLE: A Framework for Image Level Semantic Segmentation Ensemble. In G. Bebis, G. Ghiasi, Y. Fang, A. Sharf, Y. Dong, C. Weaver, Z. Leo, J. J. LaViola Jr., & L. Kohli (Eds.), <i>Advances in Visual Computing : 18th International Symposium, ISVC 2023, Lake Tahoe, NV, USA, October 16–18, 2023. Proceedings, Part I</i> (pp. 41–52). Springer. https://doi.org/10.1007/978-3-031-47966-3_4</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192685
-
dc.description.abstract
One key bottleneck of employing state-of-the-art semantic segmentation networks in the real world is the availability of training labels. Conventional semantic segmentation networks require massive pixel-wise annotated labels to reach state-of-the-art prediction quality. Hence, several works focus on semantic segmentation networks trained with only image-level annotations. However, when scrutinizing the results of state-of-the-art in more detail, we notice that they are remarkably close to each other on average prediction quality, different approaches perform better in different classes while providing low quality in others. To address this problem, we propose a novel framework, ISLE, which employs an ensemble of the “pseudo-labels” for a given set of different semantic segmentation techniques on a class-wise level. Pseudo-labels are the pixel-wise predictions of the image-level semantic segmentation frameworks used to train the final segmentation model. Our pseudo-labels seamlessly combine the strong points of multiple segmentation techniques approaches to reach superior prediction quality. We reach up to 2.4% improvement over ISLE’s individual components. An exhaustive analysis was performed to demonstrate ISLE’s effectiveness over state-of-the-art frameworks for image-level semantic segmentation.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Class Activation Maps
en
dc.subject
Deep Learning
en
dc.subject
Ensemble
en
dc.subject
Semantic Segmentation
en
dc.subject
Weakly Supervised
en
dc.title
ISLE: A Framework for Image Level Semantic Segmentation Ensemble
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
Advances in Visual Computing : 18th International Symposium, ISVC 2023, Lake Tahoe, NV, USA, October 16–18, 2023. Proceedings, Part I
-
dc.contributor.editoraffiliation
University of Central Florida, United States of America (the)
-
dc.relation.isbn
978-3-031-47969-4
-
dc.relation.doi
10.1007/978-3-031-47969-4
-
dc.description.startpage
41
-
dc.description.endpage
52
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Advances in Visual Computing : 18th International Symposium, ISVC 2023, Lake Tahoe, NV, USA, October 16–18, 2023. Proceedings, Part I
-
tuw.container.volume
14361
-
tuw.book.ispartofseries
Lecture Notes in Computer Science
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publisher.doi
10.1007/978-3-031-47966-3_4
-
dc.description.numberOfPages
12
-
tuw.editor.orcid
0000-0001-5140-0731
-
tuw.editor.orcid
0000-0003-1186-4130
-
tuw.event.name
18th International Symposium on Visual Computing
en
tuw.event.startdate
16-10-2023
-
tuw.event.enddate
18-10-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Lake Tahoe
-
tuw.event.country
US
-
tuw.event.presenter
Ostrowski, Erik
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems