<div class="csl-bib-body">
<div class="csl-entry">Wicaksana Putra, R. V., & Shafique, M. (2023). Mantis: Enabling Energy-Efficient Autonomous Mobile Agents with Spiking Neural Networks. In <i>2023 9th International Conference on Automation, Robotics and Applications (ICARA)</i> (pp. 197–201). IEEE. https://doi.org/10.1109/ICARA56516.2023.10125781</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192687
-
dc.description.abstract
Autonomous mobile agents such as unmanned aerial vehicles (UAVs) and mobile robots have shown huge potential for improving human productivity. These mobile agents require low power/energy consumption to have a long lifespan since they are usually powered by batteries. These agents also need to adapt to changing/dynamic environments, especially when deployed in far or dangerous locations, thus requiring efficient online learning capabilities. These requirements can be fulfilled by employing Spiking Neural Networks (SNNs) since SNNs offer low power/energy consumption due to sparse computations and efficient online learning due to bio-inspired learning mechanisms. However, a methodology is still required to employ appropriate SNN models on autonomous mobile agents. Towards this, we propose a Mantis methodology to systematically employ SNNs on autonomous mobile agents to enable energy-efficient processing and adaptive capabilities in dynamic environments. The key ideas of our Mantis include the optimization of SNN operations, the employment of a bio-plausible online learning mechanism, and the SNN model selection. The experimental results demonstrate that our methodology maintains high accuracy with a significantly smaller memory footprint and energy consumption (i.e., 3.32x memory reduction and 2.9x energy saving for an SNN model with 8-bit weights) compared to the baseline network with 32-bit weights. In this manner, our Mantis enables the employment of SNNs for resource- and energy-constrained mobile agents.
en
dc.language.iso
en
-
dc.subject
Autonomous mobile agents
en
dc.subject
energy efficiency
en
dc.subject
online learning
en
dc.subject
robots
en
dc.subject
spiking neural networks
en
dc.subject
UAVs
en
dc.title
Mantis: Enabling Energy-Efficient Autonomous Mobile Agents with Spiking Neural Networks
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
2023 9th International Conference on Automation, Robotics and Applications (ICARA)
-
dc.relation.isbn
978-1-6654-8921-8
-
dc.relation.doi
10.1109/ICARA56516.2023
-
dc.relation.issn
2767-7737
-
dc.description.startpage
197
-
dc.description.endpage
201
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2767-7745
-
tuw.booktitle
2023 9th International Conference on Automation, Robotics and Applications (ICARA)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publisher.doi
10.1109/ICARA56516.2023.10125781
-
dc.description.numberOfPages
5
-
tuw.event.name
2023 IEEE 9th International Conference on Automation, Robotics and Application (ICARA 2023)
en
tuw.event.startdate
10-02-2023
-
tuw.event.enddate
12-02-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Abu Dhabi
-
tuw.event.country
AE
-
tuw.event.presenter
Wicaksana Putra, Rachmad Vidya
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems