<div class="csl-bib-body">
<div class="csl-entry">Komusiewicz, C., Kunz, P., Sommer, F., & Sorge, M. (2023). On Computing Optimal Tree Ensembles. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, & J. Scarlett (Eds.), <i>Proceedings of the 40th International Conference on Machine Learning</i> (pp. 17364–17374). http://hdl.handle.net/20.500.12708/192688</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192688
-
dc.description.abstract
Random forests and, more generally, (deci- sion-)tree ensembles are widely used methods for classification and regression. Recent algorith- mic advances allow to compute decision trees that are optimal for various measures such as their size or depth. We are not aware of such research for tree ensembles and aim to contribute to this area. Mainly, we provide two novel algo- rithms and corresponding lower bounds. First, we are able to carry over and substantially improve on tractability results for decision trees, obtain- ing a (6δDS)S · poly-time algorithm, where S is the number of cuts in the tree ensemble, D the largest domain size, and δ is the largest num- ber of features in which two examples differ. To achieve this, we introduce the witness-tree tech- nique which also seems promising for practice. Second, we show that dynamic programming, which has been successful for decision trees, may also be viable for tree ensembles, providing an ℓn · poly-time algorithm, where ℓ is the number of trees and n the number of examples. Finally, we compare the number of cuts necessary to clas- sify training data sets for decision trees and tree ensembles, showing that ensembles may need ex- ponentially fewer cuts for increasing number of trees.
-
dc.language.iso
en
-
dc.subject
Decision Trees
en
dc.subject
Machine Learning
en
dc.title
On Computing Optimal Tree Ensembles
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Friedrich Schiller University Jena, Germany
-
dc.contributor.affiliation
Technische Universität Berlin, Germany
-
dc.contributor.affiliation
Friedrich Schiller University Jena, Germany
-
dc.contributor.editoraffiliation
Ben-Gurion University of the Negev, Israel
-
dc.description.startpage
17364
-
dc.description.endpage
17374
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 40th International Conference on Machine Learning
-
tuw.container.volume
202
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
dc.description.numberOfPages
11
-
tuw.author.orcid
0000-0003-0829-7032
-
tuw.editor.orcid
0000-0002-7975-0044
-
tuw.event.name
40th International Conference on Machine Learning (ICML 2023)
en
dc.description.sponsorshipexternal
German Research Foundation (DFG)
-
dc.relation.grantnoexternal
KO 3669/6-1
-
tuw.event.startdate
23-07-2023
-
tuw.event.enddate
29-07-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Honolulu
-
tuw.event.country
US
-
tuw.event.presenter
Komusiewicz, Christian
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
Friedrich Schiller University Jena
-
crisitem.author.dept
Technische Universität Berlin
-
crisitem.author.dept
Friedrich Schiller University Jena
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity