<div class="csl-bib-body">
<div class="csl-entry">Prabakaran, B. S., Ostrowski, E., & Shafique, M. (2023). ReFit: A Framework for Refinement of Weakly Supervised Semantic Segmentation Using Object Border Fitting for Medical Images. In G. Bebis, G. Ghiasi, Y. Fang, A. Sharf, Y. Dong, C. Weaver, Z. Leo, J. J. LaViola, & L. Kohli (Eds.), <i>Advances in Visual Computing : 18th International Symposium, ISVC 2023, Lake Tahoe, NV, USA, October 16–18, 2023. Proceedings, Part I</i> (pp. 44–55). Springer. https://doi.org/10.1007/978-3-031-47969-4_4</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192694
-
dc.description.abstract
Weakly Supervised Semantic Segmentation (WSSS) relying only on image-level supervision is a promising approach to deal with the need for Segmentation networks, especially for generating a large number of pixel-wise masks in a given dataset. However, most state-of-the-art image-level WSSS techniques lack an understanding of the geometric features embedded in the images since the network cannot derive any object boundary information from just image-level labels. We define a boundary here as the line separating an object and its background, or two different objects. To address this drawback, we are proposing our novel ReFit framework, which deploys state-of-the-art class activation maps combined with various post-processing techniques in order to achieve fine-grained higher-accuracy segmentation masks. To achieve this, we investigate a state-of-the-art unsupervised segmentation network that can be used to construct a boundary map, which enables ReFit to predict object locations with sharper boundaries. By applying our method to WSSS predictions, we achieved up to 10% improvement over the current state-of-the-art WSSS methods for medical imaging. The framework is open-source, to ensure that our results are reproducible, and accessible online at https://github.com/bharathprabakaran/ReFit.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Activation Maps
en
dc.subject
Boundary
en
dc.subject
CAM
en
dc.subject
Masks
en
dc.subject
Medical Imaging Framework
en
dc.subject
Refinement
en
dc.subject
Semantic Segmentation
en
dc.subject
Weak Supervision
en
dc.title
ReFit: A Framework for Refinement of Weakly Supervised Semantic Segmentation Using Object Border Fitting for Medical Images
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
Advances in Visual Computing : 18th International Symposium, ISVC 2023, Lake Tahoe, NV, USA, October 16–18, 2023. Proceedings, Part I
-
dc.relation.isbn
978-3-031-47969-4
-
dc.relation.doi
10.1007/978-3-031-47969-4
-
dc.description.startpage
44
-
dc.description.endpage
55
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Advances in Visual Computing : 18th International Symposium, ISVC 2023, Lake Tahoe, NV, USA, October 16–18, 2023. Proceedings, Part I
-
tuw.container.volume
14361
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Lecture Notes in Computer Science
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publisher.doi
10.1007/978-3-031-47969-4_4
-
dc.description.numberOfPages
12
-
tuw.editor.orcid
0000-0001-5140-0731
-
tuw.event.name
18th International Symposium on Visual Computing
en
tuw.event.startdate
16-10-2023
-
tuw.event.enddate
18-10-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Lake Tahoe
-
tuw.event.country
US
-
tuw.event.presenter
Ostrowski, Erik
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems