<div class="csl-bib-body">
<div class="csl-entry">Marchisio, A., De Marco, A., Colucci, A., Martina, M., & Shafique, M. (2023). RobCaps: Evaluating the Robustness of Capsule Networks against Affine Transformations and Adversarial Attacks. In <i>2023 International Joint Conference on Neural Networks (IJCNN)</i>. 2023 International Joint Conference on Neural Networks (IJCNN), Gold Coast, Australia. IEEE. https://doi.org/10.1109/IJCNN54540.2023.10190994</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192696
-
dc.description.abstract
Capsule Networks (CapsNets) are able to hierarchically preserve the pose relationships between multiple objects for image classification tasks. Other than achieving high accuracy, another relevant factor in deploying CapsNets in safety-critical applications is the robustness against input transformations and malicious adversarial attacks. In this paper, we systematically analyze and evaluate different factors affecting the robustness of CapsN ets, compared to traditional Convolutional Neural Networks (CNNs). Towards a comprehensive comparison, we test two CapsNet models and two CNN models on the MNIST, GTSRB, and CIFAR10 datasets, as well as on the affine-transformed versions of such datasets. With a thorough analysis, we show which properties of these architectures better contribute to increasing the robustness and their limitations. Overall, CapsNets achieve better robustness against adversarial examples and affine transformations, compared to a traditional CNN with a similar number of parameters. Similar conclusions have been derived for deeper versions of CapsNets and CNNs. Moreover, our results unleash a key finding that the dynamic routing does not contribute much to improving the CapsNets' robustness. Indeed, the main generalization contribution is due to the hierarchical feature learning through capsules.
en
dc.language.iso
en
-
dc.subject
Adversarial Attacks
en
dc.subject
Affine Transformations
en
dc.subject
Capsule Networks
en
dc.subject
Convolutional Neural Networks
en
dc.subject
Deep Neural Networks
en
dc.subject
Dynamic Routing
en
dc.subject
Machine Learning
en
dc.subject
Robustness
en
dc.subject
Security
en
dc.subject
Vulnerability
en
dc.title
RobCaps: Evaluating the Robustness of Capsule Networks against Affine Transformations and Adversarial Attacks
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
2023 International Joint Conference on Neural Networks (IJCNN)
-
dc.contributor.affiliation
Polytechnic University of Turin, Italy
-
dc.contributor.affiliation
Polytechnic University of Turin, Italy
-
dc.relation.isbn
978-1-6654-8867-9
-
dc.relation.doi
10.1109/IJCNN54540.2023
-
dc.relation.issn
2161-4393
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2161-4407
-
tuw.booktitle
2023 International Joint Conference on Neural Networks (IJCNN)
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publisher.doi
10.1109/IJCNN54540.2023.10190994
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0002-0689-4776
-
tuw.author.orcid
0000-0003-1805-750X
-
tuw.author.orcid
0000-0002-3069-0319
-
tuw.event.name
2023 International Joint Conference on Neural Networks (IJCNN)
en
tuw.event.startdate
18-06-2023
-
tuw.event.enddate
23-06-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Gold Coast
-
tuw.event.country
AU
-
tuw.event.presenter
Marchisio, Alberto
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
restricted
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems
-
crisitem.author.dept
Polytechnic University of Turin
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems
-
crisitem.author.dept
Polytechnic University of Turin
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems