<div class="csl-bib-body">
<div class="csl-entry">Ostrowski, E., Prabakaran, B. S., & Shafique, M. (2023). SILOP: An Automated Framework for Semantic Segmentation Using Image Labels Based on Object Perimeters. In <i>2023 International Joint Conference on Neural Networks (IJCNN)</i> (pp. 1–9). IEEE. https://doi.org/10.1109/IJCNN54540.2023.10191935</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192699
-
dc.description.abstract
Achieving high-quality semantic segmentation predictions using only image-level labels enables a new level of real-world applicability. Although state-of-the-art networks deliver reliable predictions, the amount of handcrafted pixel-wise annotations to enable these results are not feasible in many real-world applications. Hence, several works have already targeted this bottleneck, using classifier-based networks like Class Activation Maps [1] (CAMs) as a base. Addressing CAM's weaknesses of fuzzy borders and incomplete predictions, state-of-the-art approaches rely only on adding regulations to the classifier loss or using pixel-similarity-based refinement after the fact. We propose a framework that introduces an additional module using object perimeters for improved saliency. We define object perimeter information as the line separating the object and background. Our new PerimeterFit module will be applied to pre-refine the CAM predictions before using the pixel-similarity-based network. In this way, our PerimeterFit increases the quality of the CAM prediction while simultaneously improving the false negative rate. We investigated a wide range of state-of-the-art unsupervised semantic segmentation networks and edge detection techniques to create useful perimeter maps, which enable our framework to predict object locations with sharper perimeters. We achieved up to 1.5% improvement over frameworks without our PerimeterFit module. We conduct an exhaustive analysis to illustrate that SILOP enhances existing state-of-the-art frameworks for image-level-based semantic segmentation. The framework is open-source and accessible online at https://github.com/ErikOstrowski/SILOP.
en
dc.language.iso
en
-
dc.subject
Class Activation Maps
en
dc.subject
Image-level supervision
en
dc.subject
Semantic Segmentation
en
dc.title
SILOP: An Automated Framework for Semantic Segmentation Using Image Labels Based on Object Perimeters
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
2023 International Joint Conference on Neural Networks (IJCNN)
-
dc.relation.isbn
978-1-6654-8867-9
-
dc.relation.doi
10.1109/IJCNN54540.2023
-
dc.relation.issn
2161-4393
-
dc.description.startpage
1
-
dc.description.endpage
9
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2161-4407
-
tuw.booktitle
2023 International Joint Conference on Neural Networks (IJCNN)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publisher.doi
10.1109/IJCNN54540.2023.10191935
-
dc.description.numberOfPages
9
-
tuw.event.name
2023 International Joint Conference on Neural Networks (IJCNN)
en
tuw.event.startdate
18-06-2023
-
tuw.event.enddate
23-06-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Gold Coast
-
tuw.event.country
AU
-
tuw.event.presenter
Ostrowski, Erik
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems