<div class="csl-bib-body">
<div class="csl-entry">Jendal, T., Lissandrini, M., Dolog, P., & Hose, K. (2023). GInRec: A Gated Architecture for Inductive Recommendation using Knowledge Graphs. In V. W. Anelli, P. Basile, G. De Melo, F. Donini, A. Ferrara, C. Musto, F. Narducci, A. Ragone, & M. Zanker (Eds.), <i>Proceedings of the Fifth Knowledge-aware and Conversational Recommender Systems Workshop co-located with 17th ACM Conference on Recommender Systems (RecSys 2023)</i> (pp. 80–89). CEUR-WS.org. https://doi.org/10.34726/5395</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192934
-
dc.identifier.uri
https://doi.org/10.34726/5395
-
dc.description.abstract
We have witnessed increasing interest in exploiting KGs to integrate contextual knowledge in recommender systems in addition to user-item interactions, e.g., ratings. Yet, most methods are transductive, i.e., they represent instances seen during training as low-dimensionality vectors but cannot do so for unseen instances. Hence, they require heavy retraining every time new items or users are added. Conversely, inductive methods promise to solve these issues. KGs enhance inductive recommendation by offering information on item-entity relationships, whereas existing inductive methods rely purely on interactions, which makes recommendations for users with few interactions sub-optimal and even impossible for new items. In this work, we investigate the actual ability of inductive methods exploiting both the structure and the data represented by KGs. Hence, we propose GInRec, a state-of-the-art method that uses a graph neural network with relation-specific gates and a KG to provide better recommendations for new users and items than related inductive methods. As a result, we re-evaluate state-of-the-art methods, identify better evaluation protocols, highlight unwarranted conclusions from previous proposals, and showcase a novel, stronger architecture for this task. The source code is available at: https://github.com/theisjendal/kars2023-recommendation-framework.
en
dc.language.iso
en
-
dc.relation.ispartofseries
CEUR Workshop Proceedings
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Knowledge Graphs
en
dc.subject
Inductive Recommendation
en
dc.subject
Architecture
en
dc.subject
Recommender Systems (RS)
en
dc.subject
Multigraph
en
dc.subject
Bipartite Graphs
en
dc.subject
Network
en
dc.title
GInRec: A Gated Architecture for Inductive Recommendation using Knowledge Graphs
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/5395
-
dc.contributor.affiliation
Aalborg University, Denmark
-
dc.contributor.affiliation
Aalborg University, Denmark
-
dc.contributor.affiliation
Aalborg University, Denmark
-
dc.contributor.editoraffiliation
Polytechnic University of Bari, Italy
-
dc.contributor.editoraffiliation
University of Bari Aldo Moro, Italy
-
dc.contributor.editoraffiliation
Hasso Plattner Institute, Germany
-
dc.contributor.editoraffiliation
Università degli Studi della Tuscia, Italy
-
dc.contributor.editoraffiliation
Polytechnic University of Bari, Italy
-
dc.contributor.editoraffiliation
University of Bari Aldo Moro, Italy
-
dc.contributor.editoraffiliation
Polytechnic University of Bari, Italy
-
dc.contributor.editoraffiliation
University of Bari Aldo Moro, Italy
-
dc.contributor.editoraffiliation
Free University of Bozen/Bolzano, Italy
-
dc.description.startpage
80
-
dc.description.endpage
89
-
dc.rights.holder
2023 The authors
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1613-0073
-
tuw.booktitle
Proceedings of the Fifth Knowledge-aware and Conversational Recommender Systems Workshop co-located with 17th ACM Conference on Recommender Systems (RecSys 2023)
-
tuw.container.volume
3560
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
CEUR Workshop Proceedings
-
tuw.relation.publisher
CEUR-WS.org
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
dc.identifier.libraryid
AC17204211
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0003-2229-9042
-
tuw.author.orcid
0000-0003-1842-9131
-
tuw.author.orcid
0000-0001-7025-8099
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.editor.orcid
0000-0002-5567-4307
-
tuw.editor.orcid
0000-0002-0545-1105
-
tuw.editor.orcid
0000-0003-0284-9625
-
tuw.editor.orcid
0000-0002-7384-404X
-
tuw.editor.orcid
0000-0002-4805-5516
-
tuw.event.name
Knowledge-aware and Conversational Recommender Systems 2023 (KaRS 2023)
en
dc.description.sponsorshipexternal
European Union's H2020
-
dc.description.sponsorshipexternal
German Research Foundation (DFG)
-
dc.relation.grantnoexternal
838216
-
dc.relation.grantnoexternal
8048-00051B
-
tuw.event.startdate
19-09-2023
-
tuw.event.enddate
19-09-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Singapore
-
tuw.event.country
AT
-
tuw.event.presenter
Hose, Katja
-
tuw.event.track
Single Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openaccessfulltext
Open Access
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
item.openairetype
conference paper
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
open
-
item.mimetype
application/pdf
-
crisitem.author.dept
Aalborg University
-
crisitem.author.dept
Aalborg University
-
crisitem.author.dept
Aalborg University
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence