<div class="csl-bib-body">
<div class="csl-entry">Ahmad, S., & Aral, A. (2023). Hierarchical Federated Transfer Learning: A Multi-Cluster Approach on the Computing Continuum. In <i>Proceedings ICMLA 2023</i>. 22nd International Conference on Machine Learning and Applications (ICMLA-23), Jacksonville Riverfront, Florida, United States of America (the).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192992
-
dc.description.abstract
Federated Learning (FL) involves training models over a set of geographically distributed users. We address the problem where a single global model is not enough to meet the needs of geographically distributed heterogeneous clients. This setup captures settings where different groups of users have their own objectives however, users based on geographical location or task similarity, can be grouped together and by inter-cluster knowledge they can leverage the strength in numbers and better generalization in order to perform more efficient FL. We introduce a Hierarchical Multi-Cluster Computing Continuum for Federated Learning Personalization (HC3FL) to cluster similar clients and train one edge model per cluster. HC3FL incorporates federated transfer learning to enhance the performance of edge models by leveraging a global model that captures collective knowledge from all edge models. Furthermore, we introduce dynamic clustering based on task similarity to handle client drift and to dynamically recluster mobile (non-stationary) clients. We evaluate the HC3FL approach through extensive experiments on real-world datasets. The results demonstrate that our approach effectively improves the performance of edge models compared to traditional FL approaches.
Index Terms—federated transfer learning, hierarchical collaborative learning, dynamic clustering.
en
dc.language.iso
en
-
dc.subject
Edge Computing
en
dc.subject
Federated Learning
en
dc.subject
Computing Continuum
en
dc.title
Hierarchical Federated Transfer Learning: A Multi-Cluster Approach on the Computing Continuum
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings ICMLA 2023
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
90
-
tuw.researchTopic.value
10
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
dc.description.numberOfPages
6
-
tuw.event.name
22nd International Conference on Machine Learning and Applications (ICMLA-23)
en
tuw.event.startdate
15-12-2023
-
tuw.event.enddate
17-12-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Jacksonville Riverfront, Florida
-
tuw.event.country
US
-
tuw.event.presenter
Ahmad, Sabtain
-
tuw.event.presenter
Aral, Atakan
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
restricted
-
crisitem.author.dept
E194-04 - Forschungsbereich E-Commerce
-
crisitem.author.dept
E194-04 - Forschungsbereich E-Commerce
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering