<div class="csl-bib-body">
<div class="csl-entry">Lamurias, A., Tibo, A., Hose, K., Albertsen, M., & Nielsen, T. D. (2023). Metagenomic Binning using Connectivity-constrained Variational Autoencoders. In <i>Proceedings of the 40th International Conference on Machine Learning</i>. 40th International Conference on Machine Learning (ICML 2023), Honolulu, United States of America (the).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/192999
-
dc.description.abstract
Current state-of-the-art techniques for metagenomic binning only utilize local features for the individual DNA sequences (contigs), neglecting additional information such as the assembly graph,in which the contigs are connected according to overlapping reads, and gene markers identified in the contigs. In this paper, we propose the use of a Variational AutoEncoder (VAE) tailored to leverage auxiliary structural information about contig
relations when learning contig representations for subsequent metagenomic binning. Our method, CCVAE, improves on previous work that used VAEs for learning latent representations of the individual contigs, by constraining these representations according to the connectivity information from the assembly graph. Additionally, we incorporate into the model additional information in the form of marker genes to better differentiate
contigs from different genomes. Our experiments on both simulated and real-world datasets demonstrate that CCVAE outperforms current state-of-the-art techniques, thus providing a more effective method for metagenomic binning
en
dc.language.iso
en
-
dc.subject
Metagenomic Binning
en
dc.subject
Connectivity-constrained
en
dc.subject
Variational Autoencoders
en
dc.subject
Microbes
en
dc.subject
DNA bases
en
dc.subject
DNA fragments
en
dc.subject
Edge
en
dc.subject
Clustering
en
dc.subject
Evaluation
en
dc.title
Metagenomic Binning using Connectivity-constrained Variational Autoencoders
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Aalborg University, Denmark
-
dc.contributor.affiliation
Aalborg University, Denmark
-
dc.contributor.affiliation
Aalborg University, Denmark
-
dc.contributor.affiliation
Aalborg University, Denmark
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 40th International Conference on Machine Learning
-
tuw.container.volume
202
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
dc.description.numberOfPages
11
-
tuw.author.orcid
0000-0001-7025-8099
-
tuw.author.orcid
0000-0002-6151-190X
-
tuw.author.orcid
0000-0002-4823-6341
-
tuw.event.name
40th International Conference on Machine Learning (ICML 2023)
en
tuw.event.startdate
23-07-2023
-
tuw.event.enddate
29-07-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Honolulu
-
tuw.event.country
US
-
tuw.event.presenter
Albertsen, Mads
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
restricted
-
crisitem.author.dept
Aalborg University
-
crisitem.author.dept
Aalborg University
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence