<div class="csl-bib-body">
<div class="csl-entry">Zeimetz, T., Hose, K., & Schenkel, R. (2023). Tunable Query Optimizer for Web APIs and User Preferences. In B. Venable, D. Garijoa, & B. Jalaian (Eds.), <i>Proceedings of the 12th Knowledge Capture Conference 2023</i> (pp. 92–100). Association for Computing Machinery (ACM). https://doi.org/10.1145/3587259.3627542</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193000
-
dc.description.abstract
To answer queries many SPARQL query processors use different sources, e.g., various knowledge bases (KBs) or end points. RESTful Web APIs are rarely the focus of those systems as they come with many limitations, like not being able to process SPARQL queries. Moreover, most existing approaches optimize their query plans only for performance, even though users often have additional preferences, e.g., coverage, reliability, or currency. Additionally, data is often provided with different levels of quality so that not all sources should be trusted equally. In this paper, we therefore present TunA, a query engine that is able to combine RESTful Web APIs and local RDF KBs in the form of triple stores while tuning its (query) plans towards user preferences. Erroneous information from Web APIs is detected using hierarchical agglomerative clustering. Our evaluation shows that TunA outperforms current state-of-the-art systems and is less vulnerable to erroneous information, even in settings where only unreliable sources are available.
en
dc.language.iso
en
-
dc.relation.ispartofseries
ACM Conferences
-
dc.subject
Quality Estimation
en
dc.subject
Query Rewriting
en
dc.subject
RESTful Web APIs
en
dc.subject
Tunable Query Optimizer
en
dc.subject
SPARQL query
en
dc.subject
Approaches
en
dc.subject
Processors
en
dc.subject
Clustering
en
dc.title
Tunable Query Optimizer for Web APIs and User Preferences
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Universität Trier, Germany
-
dc.contributor.editoraffiliation
University of West Florida, United States of America (the)
-
dc.relation.isbn
9798400701412
-
dc.description.startpage
92
-
dc.description.endpage
100
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 12th Knowledge Capture Conference 2023
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
ACM Digital Library
-
tuw.relation.publisher
Association for Computing Machinery (ACM)
-
tuw.relation.publisherplace
New York, NY, USA
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.1145/3587259.3627542
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0002-5436-637X
-
tuw.author.orcid
0000-0001-7025-8099
-
tuw.author.orcid
0000-0001-5379-5191
-
tuw.editor.orcid
0000-0003-3029-601X
-
tuw.event.name
K-CAP '23: Proceedings of the 12th Knowledge Capture Conference 2023
en
tuw.event.startdate
05-12-2023
-
tuw.event.enddate
07-12-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Pensacola, FL
-
tuw.event.country
US
-
tuw.event.presenter
Hose, Katja
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairetype
conference paper
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence