<div class="csl-bib-body">
<div class="csl-entry">Soldà, D., Fabiano, F., & Dovier, A. (2023). ECHO: A hierarchical combination of classical and multi-agent epistemic planning problems. <i>Journal of Logic and Computation</i>, <i>33</i>(8), 1804–1831. https://doi.org/10.1093/logcom/exad036</div>
</div>
-
dc.identifier.issn
0955-792X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193033
-
dc.description.abstract
The continuous interest in Artificial Intelligence (AI) has brought, among other things, the development of several scenarios where multiple artificial entities interact with each other. As for all the other autonomous settings, these multi-agent systems require orchestration. This is, generally, achieved through techniques derived from the vast field of Automated Planning. Notably, arbitration in multi-agent domains is not only tasked with regulating how the agents act, but must also consider the interactions between the agents’ information flows and must, therefore, reason on an epistemic level. This brings a substantial overhead that often diminishes the reasoning process’s usability in real-world situations. To address this problem, we present ECHO, a hierarchical framework that embeds classical and multi-agent epistemic (epistemic, for brevity) planners in a single architecture. The idea is to combine (i) classical; and(ii) epistemic solvers to model efficiently the agents’ interactions with the (i) ‘physical world’; and(ii) information flows, respectively. In particular, the presented architecture starts by planning on the ‘epistemic level’, with a high level of abstraction, focusing only on the information flows. Then it refines the planning process, due to the classical planner, to fully characterize the interactions with the ‘physical’ world. To further optimize the solving process, we introduced the concept of macros in epistemic planning and enriched the ‘classical’ part of the domain with goal-networks. Finally, we evaluated our approach in an actual robotic environment showing that our architecture indeed reduces the overall computational time.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.publisher
OXFORD UNIV PRESS
-
dc.relation.ispartof
Journal of Logic and Computation
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Epistemic logic
en
dc.subject
Automated Plannning
en
dc.title
ECHO: A hierarchical combination of classical and multi-agent epistemic planning problems
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.url
https://doi.org/10.1093/logcom/exad036
-
dc.contributor.affiliation
New Mexico State University, United States of America (the)