<div class="csl-bib-body">
<div class="csl-entry">Pluska, A., & Zuleger, F. (2023). Embedding Intuitionistic into Classical Logic. In R. Piskac & A. Voronkov (Eds.), <i>Proceedings of 24th International Conference on Logic for Programming, Artificial Intelligence and Reasoning</i> (pp. 329–349). https://doi.org/10.29007/b294</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193201
-
dc.description.abstract
The famous double negation translation [16, 17] establishes an embedding of classical into intuitionistic logic. Curiously, the reverse direction has not been covered in literature. Utilizing a normal form for intuitionistic logic [20], we establish a small model property for intuitionistic propositional logic. We use this property for a direct encoding of the Kripke semantics into classical propositional logic and quantified Boolean formulae. Next, we transfer the developed techniques to the first order case and provide an embedding of intuitionistic first-order logic into classical first-order-logic. Our goal here is an encoding that facilitates the use of state-of-the-art provers for classical first-order logic for determining intuitionistic validity. In an experimental evaluation, we show that our approach can compete with state-of-the-art provers for certain classes of benchmarks, in particular when the intuitionistic content is low. We further note that our constructions support the transfer of counter-models to validity, which is a desired feature in model checking applications.
en
dc.language.iso
en
-
dc.relation.ispartofseries
EPiC Series in Computing
-
dc.subject
automated reasoning
en
dc.subject
intuitionistic logic
en
dc.subject
model theory
en
dc.subject
proof theory
en
dc.title
Embedding Intuitionistic into Classical Logic
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.editoraffiliation
Yale University, United States of America (the)
-
dc.contributor.editoraffiliation
University of Manchester, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.relation.issn
2398-7340
-
dc.description.startpage
329
-
dc.description.endpage
349
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of 24th International Conference on Logic for Programming, Artificial Intelligence and Reasoning
-
tuw.container.volume
94
-
tuw.book.ispartofseries
EPiC Series in Computing
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-04 - Forschungsbereich Formal Methods in Systems Engineering
-
tuw.publisher.doi
10.29007/b294
-
dc.description.numberOfPages
21
-
tuw.author.orcid
0000-0003-1468-8398
-
tuw.editor.orcid
0000-0002-3267-0776
-
tuw.editor.orcid
0000-0003-1073-7615
-
tuw.event.name
LPAR-24: 24th International Conference on Logic for Programming, Artificial Intelligence and Reasoning
en
tuw.event.startdate
04-06-2023
-
tuw.event.enddate
09-06-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Manizales, Colombia
-
tuw.event.country
CO
-
tuw.event.presenter
Pluska, Alexander
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E192-04 - Forschungsbereich Formal Methods in Systems Engineering
-
crisitem.author.dept
E192-04 - Forschungsbereich Formal Methods in Systems Engineering