<div class="csl-bib-body">
<div class="csl-entry">Banaeyan, M., & Kropatsch, W. (2022). Parallel O(log(n)) Computation of the Adjacency of Connected Components. In <i>3rd International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI)</i> (pp. 102–113). https://doi.org/10.1007/978-3-031-09282-4_9</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193204
-
dc.description.abstract
Connected Component Labeling (CCL) is a fundamental task in pattern recognition and image processing algorithms. It groups the pixels into regions, such that adjacent pixels have the same label while pixels belonging to distinct regions have different labels. The common linear-time raster scan CCL techniques have a complexity of O(image- size) in a 2D binary image. To speed up the procedure of the CCL, the paper proposes a new irregular graph pyramid. To construct this pyramid, we use a new formalism [1] that introduces an order of the pixels in the base grid to detect the redundant edges through the hierarchical structure. These redundant edges, unlike the usual methods of constructing the irregular pyramid, are removed before contracting the edges. This not only simplifies the construction processes but may decrease memory consumption by approximately half. To perform the CCL task efficiently the proposed parallel algorithm reduces the complexity to O(log(n) ) where the n is the diameter of the largest connected component in the image. In addition, using an efficient combinatorial structure the topological properties of the connected components including adjacency of CCs, multi-boundaries and inclusions are preserved. Finally, the mathematical proofs provide fully parallel implementations and lead to efficient results in comparison with the state-of-the-art.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Combinatorial map
en
dc.subject
Connected Component Labeling
en
dc.subject
Irregular graph pyramid
en
dc.subject
Parallel processing
en
dc.subject
Pattern recognition
en
dc.title
Parallel O(log(n)) Computation of the Adjacency of Connected Components
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-3-031-09282-4
-
dc.description.startpage
102
-
dc.description.endpage
113
-
dcterms.dateSubmitted
2022-05-29
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
3rd International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI)
-
tuw.container.volume
13364
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
70
-
tuw.publication.orgunit
E193 - Institut für Visual Computing and Human-Centered Technology
-
tuw.publisher.doi
10.1007/978-3-031-09282-4_9
-
dc.description.numberOfPages
12
-
tuw.event.name
International Conference on Pattern Recognition and Artificial Intelligence
en
tuw.event.startdate
01-06-2022
-
tuw.event.enddate
03-06-2022
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Paris
-
tuw.event.country
FR
-
tuw.event.presenter
Banaeyan, Majid
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E193-03 - Forschungsbereich Virtual and Augmented Reality
-
crisitem.author.dept
E193-03 - Forschungsbereich Virtual and Augmented Reality
-
crisitem.author.orcid
0000-0001-8621-6424
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology