<div class="csl-bib-body">
<div class="csl-entry">Naseer, M., & Shafique, M. (2023). Poster: Link between Bias, Node Sensitivity and Long-Tail Distribution in trained DNNs. In <i>2023 IEEE 16th International Conference on Software Testing, Verification and Validation</i> (pp. 474–477). https://doi.org/10.1109/ICST57152.2023.00054</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193206
-
dc.description.abstract
Owing to their remarkable learning (and relearning) capabilities, deep neural networks (DNNs) find use in numerous real-world applications. However, the learning of these data-driven machine learning models is generally as good as the data available to them for training. Hence, training datasets with long-tail distribution pose a challenge for DNNs, since the DNNs trained on them may provide a varying degree of classification performance across different output classes. While the overall bias of such networks is already highlighted in existing works, this work identifies the node bias that leads to a varying sensitivity of the nodes for different output classes. To the best of our knowledge, this is the first work highlighting this unique challenge in DNNs, discussing its probable causes, and providing open challenges for this new research direction. We support our reasoning using an empirical case study of the networks trained on a real-world dataset.
en
dc.language.iso
en
-
dc.subject
Bias
en
dc.subject
Class-wise Performance
en
dc.subject
Deep Neural Networks (DNNs)
en
dc.subject
Input Sensitivity
en
dc.subject
Robustness
en
dc.title
Poster: Link between Bias, Node Sensitivity and Long-Tail Distribution in trained DNNs
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-1-6654-5666-1
-
dc.description.startpage
474
-
dc.description.endpage
477
-
dc.type.category
Poster Contribution
-
tuw.booktitle
2023 IEEE 16th International Conference on Software Testing, Verification and Validation
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publisher.doi
10.1109/ICST57152.2023.00054
-
dc.description.numberOfPages
4
-
tuw.event.name
16th IEEE International Conference on Software Testing, Verification and Validation (ICST 2023)
en
tuw.event.startdate
16-04-2023
-
tuw.event.enddate
20-04-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
IE
-
tuw.event.presenter
Naseer, Mahum
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference poster
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_6670
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems