<div class="csl-bib-body">
<div class="csl-entry">Ali, S. J., Gavric, A., Proper, H., & Bork, D. (2023). Encoding Conceptual Models for Machine Learning: A Systematic Review. In <i>2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C)</i> (pp. 562–570). IEEE. https://doi.org/10.1109/MODELS-C59198.2023.00094</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193226
-
dc.description.abstract
Conceptual models are essential in Software and Information Systems Engineering to meet many purposes since they explicitly represent the subject domains. Machine Learning (ML) approaches have recently been used in conceptual modeling to realize, among others, intelligent modeling assistance, model transformation, and metamodel classification. These works en-code models in various ways, making the encoded models suitable for applying ML algorithms. The encodings capture the models' structure and/or semantics, making this information available to the ML model during training. Therefore, the choice of the encoding for any ML-driven task is crucial for the ML model to learn the relevant contextual information. In this paper, we report findings from a systematic literature review which yields insights into the current research in machine learning for conceptual modeling (ML4CM). The review focuses on the various encodings used in existing ML4CM solutions and provides insights into i) which are the information sources, ii) how is the conceptual model's structure and/or semantics encoded, iii) why is the model encoded, i.e., for which conceptual modeling task and, iv) which ML algorithms are applied. The results aim to structure the state of the art in encoding conceptual models for ML.
en
dc.description.sponsorship
CDP Center for Digital Production G
-
dc.language.iso
en
-
dc.subject
Conceptual Modeling
en
dc.subject
Analytical models
en
dc.subject
Systematics
en
dc.subject
Machine Learning algorithms
en
dc.subject
Bibliographies
en
dc.subject
Semantics
en
dc.subject
Machine Learning
en
dc.title
Encoding Conceptual Models for Machine Learning: A Systematic Review
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-3503-2498-3
-
dc.description.startpage
562
-
dc.description.endpage
570
-
dc.relation.grantno
854187
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.relation.publisherplace
Piscataway
-
tuw.project.title
MFP 4.2 Advanced Analytics for Smart Manufacturing
-
tuw.researchinfrastructure
Pilotfabrik
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-03 - Forschungsbereich Business Informatics
-
tuw.publisher.doi
10.1109/MODELS-C59198.2023.00094
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0002-7318-2496
-
tuw.author.orcid
0000-0001-8259-2297
-
tuw.event.name
2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C)
en
tuw.event.startdate
01-10-2023
-
tuw.event.enddate
06-10-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Västeras
-
tuw.event.country
SE
-
tuw.event.presenter
Ali, Syed Juned
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E194-03 - Forschungsbereich Business Informatics
-
crisitem.author.dept
E194-03 - Forschungsbereich Business Informatics
-
crisitem.author.dept
E194-03 - Forschungsbereich Business Informatics
-
crisitem.author.dept
E194-03 - Forschungsbereich Business Informatics
-
crisitem.author.orcid
0000-0003-1221-0278
-
crisitem.author.orcid
0000-0002-7318-2496
-
crisitem.author.orcid
0000-0001-8259-2297
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering