<div class="csl-bib-body">
<div class="csl-entry">Eiter, T., Higuera Ruiz, N. N., & Oetsch, J. (2023). A modular neurosymbolic approach for visual graph question answering. In A. S. d’Avila Garcez, T. R. Besold, M. Gori, & E. Jiménez-Ruiz (Eds.), <i>Proceedings of the 17th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy 2023)</i> (pp. 139–149). CEUR-WS.org. https://doi.org/10.34726/5409</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193241
-
dc.identifier.uri
https://doi.org/10.34726/5409
-
dc.description.abstract
Images containing graph-based structures are a ubiquitous and popular form of data representation that, to the best of our knowledge, have not yet been considered in the domain of Visual Question Answering (VQA). We use CLEGR, a graph question answering dataset with a generator that synthetically produces vertex-labelled graphs that are inspired by metro networks. Structured information about stations and lines is provided, and the task is to answer natural language questions concerning such graphs. While symbolic methods suffice to solve this dataset, we consider the more challenging problem of taking images of the graphs instead of their symbolic representations as input. Our solution takes the form of a modular neurosymbolic model that combines the use of optical graph recognition for graph parsing, a pretrained optical character recognition neural network for parsing node labels, and answer-set programming, a popular logic-based approach to declarative problem solving, for reasoning. The implementation of the model achieves an overall average accuracy of 73% on the dataset, providing further evidence of the potential of modular neurosymbolic systems in solving complex VQA tasks, in particular, the use and control of pretrained models in this architecture.
en
dc.language.iso
en
-
dc.relation.ispartofseries
CEUR Workshop Proceedings
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Neurosymbolic
en
dc.subject
Visual Question Answering
en
dc.title
A modular neurosymbolic approach for visual graph question answering
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/5409
-
dc.contributor.editoraffiliation
University of London, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.editoraffiliation
Sony (Spain), Spain
-
dc.contributor.editoraffiliation
University of Siena, Italy
-
dc.contributor.editoraffiliation
University of Oslo, Norway
-
dc.description.startpage
139
-
dc.description.endpage
149
-
dc.rights.holder
2023 The authors
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1613-0073
-
tuw.booktitle
Proceedings of the 17th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy 2023)
-
tuw.container.volume
3432
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
CEUR Workshop Proceedings
-
tuw.relation.publisher
CEUR-WS.org
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-03 - Forschungsbereich Knowledge Based Systems
-
dc.identifier.libraryid
AC17204196
-
dc.description.numberOfPages
11
-
tuw.author.orcid
0000-0001-6003-6345
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.editor.orcid
0000-0001-7375-9518
-
tuw.editor.orcid
0000-0002-8002-0049
-
tuw.editor.orcid
0000-0001-6337-5430
-
tuw.editor.orcid
0000-0002-9083-4599
-
tuw.event.name
17th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy 2023)
en
tuw.event.startdate
03-07-2023
-
tuw.event.enddate
05-07-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Certosa di Pontignano
-
tuw.event.country
IT
-
tuw.event.presenter
Higuera Ruiz, Nelson Nicolas
-
tuw.event.track
Single Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openaccessfulltext
Open Access
-
item.openairetype
conference paper
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E192 - Institut für Logic and Computation
-
crisitem.author.dept
E192-03 - Forschungsbereich Knowledge Based Systems
-
crisitem.author.dept
E192-03 - Forschungsbereich Knowledge Based Systems