<div class="csl-bib-body">
<div class="csl-entry">El-Sherbiny, S., Ning, J., Hantusch, B., Kenner, L., & Raidou, R. G. (2023). Visual Analytics for the Integrated Exploration and Sensemaking of Cancer Cohort Radiogenomics and Clinical Information. In <i>VCBM 2023: Eurographics Workshop on Visual Computing for Biology and Medicine</i> (pp. 121–133). The Eurographics Association. https://doi.org/10.2312/vcbm.20231220</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193257
-
dc.description.abstract
We present a visual analytics (VA) framework for the comprehensive exploration and integrated analysis of radiogenomic and clinical data from a cancer cohort. Our framework aims to support the workflow of cancer experts and biomedical data scientists as they investigate cancer mechanisms. Challenges in the analysis of radiogenomic data, such as the heterogeneity and complexity of the data sets, hinder the exploration and sensemaking of the available patient information. These challenges can be answered through the field of VA, but approaches that bridge radiogenomic and clinical data in an interactive and flexible visual framework are still lacking. Our approach enables the integrated exploration and joint analysis of radiogenomic data and clinical information for knowledge discovery and hypothesis assessment through a flexible VA dashboard. We follow a user-centered design strategy, where we integrate domain knowledge into a semi-automated analytical workflow based on unsupervised machine learning to identify patterns in the patient data provided by our collaborating domain experts. An interactive visual interface further supports the exploratory and analytical process in a free and a hypothesis-driven manner. We evaluate the unsupervised machine learning models through similarity measures and assess the usability of the framework through use cases conducted with cancer experts. Expert feedback indicates that our framework provides suitable and flexible means for gaining insights into large and heterogeneous cancer cohort data, while also being easily extensible to other data sets.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Eurographics Workshop on Visual Computing for Biomedicine
-
dc.subject
Visual Analytics
en
dc.subject
Human-centered computing
en
dc.subject
Applied computing
en
dc.subject
Life and medical sciences
en
dc.title
Visual Analytics for the Integrated Exploration and Sensemaking of Cancer Cohort Radiogenomics and Clinical Information
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
VCBM 2023: Eurographics Workshop on Visual Computing for Biology and Medicine
-
dc.contributor.affiliation
Medical University of Vienna, Austria
-
dc.contributor.affiliation
Medical University of Vienna, Austria
-
dc.contributor.affiliation
Medical University of Vienna, Austria
-
dc.relation.isbn
978-3-03868-177-9
-
dc.relation.issn
2070-5786
-
dc.description.startpage
121
-
dc.description.endpage
133
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
VCBM 2023: Eurographics Workshop on Visual Computing for Biology and Medicine
-
tuw.book.ispartofseries
Eurographics Workshop on Visual Computing for Biomedicine
-
tuw.relation.publisher
The Eurographics Association
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-02 - Forschungsbereich Computer Graphics
-
tuw.publisher.doi
10.2312/vcbm.20231220
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0009-0007-2603-5016
-
tuw.author.orcid
0000-0001-5059-2401
-
tuw.author.orcid
0000-0002-9126-003X
-
tuw.author.orcid
0000-0003-2184-1338
-
tuw.author.orcid
0000-0003-2468-0664
-
tuw.event.name
EG VCBM 2023
en
tuw.event.startdate
20-09-2023
-
tuw.event.enddate
22-09-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
SE
-
tuw.event.presenter
El-Sherbiny, Sarah
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Medizinische Biochemie, Humangenetik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
3013
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
crisitem.author.dept
E193-02 - Forschungsbereich Computer Graphics
-
crisitem.author.dept
Medical University of Vienna
-
crisitem.author.dept
Medical University of Vienna
-
crisitem.author.dept
Medical University of Vienna
-
crisitem.author.dept
E193-02 - Forschungsbereich Computer Graphics
-
crisitem.author.orcid
0009-0007-2603-5016
-
crisitem.author.orcid
0000-0002-9126-003X
-
crisitem.author.orcid
0000-0003-2184-1338
-
crisitem.author.orcid
0000-0003-2468-0664
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology