<div class="csl-bib-body">
<div class="csl-entry">Ipp, A., Müller, D., Schuh, D., & Favoni, M. (2023, June 27). <i>Visualizing the inner workings of L-CNNs</i> [Conference Presentation]. Machine learning for lattice field theory and beyond 2023, Trento, Italy.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193362
-
dc.description.abstract
Lattice Gauge Equivariant Convolutional Neural Networks (L-CNNs) leverage convolutions with proper parallel transport and bilinear layers to combine basic plaquettes into arbitrarily shaped Wilson loops of growing length and area [1]. These networks provide a powerful framework for addressing challenging problems in lattice field theory.
In this talk, we explore the inner workings of L-CNNs, aiming to gain insight into the contributions of the different layers. Through visualization techniques, we analyze the patterns and structures of the Wilson loops that emerge, studying to what degree L-CNN architectures exhibit redundancy in the parameters. With our findings we aim to provide a deeper understanding of L-CNN behavior and improve its interpretability.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
Convolutional Neural Networks
en
dc.subject
Lattice Gauge Theory
en
dc.title
Visualizing the inner workings of L-CNNs
-
dc.type
Presentation
en
dc.type
Vortrag
de
dc.relation.grantno
P 32446-N27
-
dc.relation.grantno
P 34764-N
-
dc.relation.grantno
P 34455-N
-
dc.type.category
Conference Presentation
-
tuw.project.title
Glasma-Simulationen mit maschinellem Lernen hochskalieren
-
tuw.project.title
Simulation der frühesten Stadien von Schwerionenkollisionen