<div class="csl-bib-body">
<div class="csl-entry">Pavlović, A., & Sallinger, E. (2023). ExpressivE: A Spatio-Functional Embedding For Knowledge Graph Completion. In <i>The Eleventh International Conference on Learning Representations (ICLR 2023)</i> (pp. 1–45). OpenReview.net. https://doi.org/10.34726/5422</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193493
-
dc.identifier.uri
https://doi.org/10.34726/5422
-
dc.description.abstract
Knowledge graphs are inherently incomplete. Therefore substantial research has been directed toward knowledge graph completion (KGC), i.e., predicting missing triples from the information represented in the knowledge graph (KG). KG embedding models (KGEs) have yielded promising results for KGC, yet any current KGE is incapable of: (1) fully capturing vital inference patterns (e.g., composition), (2) capturing prominent patterns jointly (e.g., hierarchy and composition), and (3) providing an intuitive interpretation of captured patterns. In this work, we propose ExpressivE, a fully expressive spatio-functional KGE that solves all these challenges simultaneously. ExpressivE embeds pairs of entities as points and relations as hyper-parallelograms in the virtual triple space R2d. This model design allows ExpressivE not only to capture a rich set of inference patterns jointly but additionally to display any supported inference pattern through the spatial relation of hyper-parallelograms, offering an intuitive and consistent geometric interpretation of ExpressivE embeddings and their captured patterns. Experimental results on standard KGC benchmarks reveal that ExpressivE is competitive with state-of-the-art KGEs and even significantly outperforms them on WN18RR.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.relation.hasversion
https://doi.org/10.48550/arXiv.2206.04192
-
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
-
dc.subject
Knowledge Graph
en
dc.subject
Knowledge Graph Completion
en
dc.subject
Knowledge Graph Embedding
en
dc.subject
Benchmarks
en
dc.subject
Functional Models
en
dc.subject
Virtual Triple Space
en
dc.subject
Knowledge Capturing Capabilities
en
dc.subject
inference pattern
en
dc.subject
General Composition
en
dc.subject
Performance Gain
en
dc.subject
Spatial Models
en
dc.subject
Hyperparameter Optimization
en
dc.subject
Space Complexity
en
dc.title
ExpressivE: A Spatio-Functional Embedding For Knowledge Graph Completion
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
en
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
de
dc.identifier.doi
10.34726/5422
-
dc.description.startpage
1
-
dc.description.endpage
45
-
dc.relation.grantno
VRG18-013
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
The Eleventh International Conference on Learning Representations (ICLR 2023)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
OpenReview.net
-
tuw.project.title
Scalable Reasoning in Knowledge Graphs
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.linking
https://openreview.net/forum?id=xkev3_np08z
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
dc.identifier.libraryid
AC17203082
-
dc.description.numberOfPages
45
-
tuw.author.orcid
0000-0001-6887-9515
-
dc.rights.identifier
CC BY-NC-ND 4.0
en
dc.rights.identifier
CC BY-NC-ND 4.0
de
tuw.event.name
11th International Conference on Learning Representations (ICLR 2023)
en
tuw.event.startdate
01-05-2023
-
tuw.event.enddate
05-05-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Kigali, Rwanda
-
tuw.event.country
RW
-
tuw.event.presenter
Pavlovic, Aleksandar
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openaccessfulltext
Open Access
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openairetype
conference paper
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.orcid
0000-0001-6887-9515
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds