<div class="csl-bib-body">
<div class="csl-entry">Hüpfl, J., Bachelard, N., Kaczvinszki, M., Horodynski, M. A., Kühmayer, M., & Rotter, S. (2023, September 19). <i>Optimal Cooling of Multiple Levitated Particles through Far-Field Wavefront-Shaping</i> [Poster Presentation]. SFO Thematic School 2023 : waves in complex media from theory to practice., France.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193497
-
dc.description.abstract
Particles on the nano- to micrometer scale can be levitated and cooled down towards their motional ground state using optical forces. A major challenge in the field of levitation consists in extending existing methods to many particles. This would allow for the entanglement of mesoscopic objects or could provide a platform to test many-body quantum effects at the mesoscale. Indeed, a significant roadblock so far has been the requirement to monitor the particles' many degrees of freedom simultaneously and to engineer complex light fields to respond to their motion in real time.
We solve both of these problems by introducing and computationally verifying a novel multi-particle cooling approach using a generalization of the Wigner-Smith time-delay operator [Phys. Rev. Lett. 130, 083203 (2023)]. For electromagnetic fields we connect the eigenvalues of this operator with the energy shift the corresponding fields induce in the particles. Through this, we can identify spatially modulated wave-fronts that optimally counteract the motion of multiple particles in parallel. Remarkably, our approach decouples the degrees of freedom of the fields from those of the particles, naturally leading to good scaling properties.
We can thus propose an experimental implementation, where continuously shaped wave-fronts cool an ensemble of levitated objects.
en
dc.language.iso
en
-
dc.subject
Optomechanics
en
dc.title
Optimal Cooling of Multiple Levitated Particles through Far-Field Wavefront-Shaping
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.type.category
Poster Presentation
-
tuw.researchTopic.id
Q1
-
tuw.researchTopic.name
Photonics
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E136 - Institut für Theoretische Physik
-
tuw.publication.orgunit
E322-01 - Forschungsbereich Strömungsmechanik
-
tuw.author.orcid
0000-0002-2953-5872
-
tuw.author.orcid
0000-0002-4123-1417
-
tuw.event.name
SFO Thematic School 2023 : waves in complex media from theory to practice.
en
tuw.event.startdate
18-09-2023
-
tuw.event.enddate
29-09-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
FR
-
tuw.event.presenter
Hüpfl, Jakob
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1030
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_18co
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.openairetype
conference poster not in proceedings
-
crisitem.author.dept
E136 - Institut für Theoretische Physik
-
crisitem.author.dept
E136 - Institut für Theoretische Physik
-
crisitem.author.dept
E322-01 - Forschungsbereich Strömungsmechanik
-
crisitem.author.dept
E136 - Institut für Theoretische Physik
-
crisitem.author.dept
E136 - Institut für Theoretische Physik
-
crisitem.author.dept
E136 - Institut für Theoretische Physik
-
crisitem.author.orcid
0000-0002-2953-5872
-
crisitem.author.orcid
0000-0002-4123-1417
-
crisitem.author.parentorg
E130 - Fakultät für Physik
-
crisitem.author.parentorg
E130 - Fakultät für Physik
-
crisitem.author.parentorg
E322 - Institut für Strömungsmechanik und Wärmeübertragung