<div class="csl-bib-body">
<div class="csl-entry">Brand, C., Ganian, R., & Rocton, M. T. (2023). New Complexity-Theoretic Frontiers of Tractability for Neural Network Training. In <i>37th Conference on Neural Information Processing Systems (NeurIPS 2023)</i>. NeurIPS 2023: Thirty-seventh Annual Conference on Neural Information Processing Systems, New Orleans, United States of America (the).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193615
-
dc.description.abstract
In spite of the fundamental role of neural networks in contemporary machine learning research, our understanding of the computational complexity of optimally training neural networks remains limited even when dealing with the simplest kinds of activation functions. Indeed, while there has been a number of very recent results that establish ever-tighter lower bounds for the problem under linear and ReLU activation functions, little progress has been made towards the identification of novel polynomial-time tractable network architectures. In this article we obtain novel algorithmic upper bounds for training linear- and ReLU-activated neural networks to optimality which push the boundaries of tractability for these problems beyond the previous state of the art
en
dc.language.iso
en
-
dc.subject
neural network training
en
dc.subject
Computational Complexity
en
dc.subject
ReLU networks
en
dc.subject
Linear networks
en
dc.title
New Complexity-Theoretic Frontiers of Tractability for Neural Network Training
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
37th Conference on Neural Information Processing Systems (NeurIPS 2023)
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.linking
https://openreview.net/pdf?id=zIEaOZ0saA
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0000-0002-7762-8045
-
tuw.author.orcid
0000-0002-7158-9022
-
tuw.event.name
NeurIPS 2023: Thirty-seventh Annual Conference on Neural Information Processing Systems
en
tuw.event.startdate
10-12-2023
-
tuw.event.enddate
16-12-2023
-
tuw.event.online
Online
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
New Orleans
-
tuw.event.country
US
-
tuw.event.presenter
Brand, Cornelius
-
tuw.presentation.online
Online
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity