<div class="csl-bib-body">
<div class="csl-entry">Graziani, C., Drucks, T., Bianchini, M., Scarselli, F., & Gärtner, T. (2023). No PAIN no Gain: More Expressive GNNs with Paths. In <i>NeurIPS 2023 Workshop: New Frontiers in Graph Learning</i>. NeurIPS 2023 Workshop: New Frontiers in Graph Learning, New Orleans, LA, United States of America (the). OpenReview.net. https://doi.org/10.34726/5429</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193616
-
dc.identifier.uri
https://doi.org/10.34726/5429
-
dc.description.abstract
Motivated by the lack of theoretical investigation into the discriminative power of paths, we characterize classes of graphs where paths are sufficient to identify every instance. Our analysis motivates the integration of paths into the learning procedure of graph neural networks in order to enhance their expressiveness. We formally justify the use of paths based on finite-variable counting logic and prove the effectiveness of paths to recognize graph structural features related to cycles and connectivity. We show that paths are able to identify graphs for which higher-order models fail. Building on this, we propose PAth Isomorphism Network (PAIN), a novel graph neural network that replaces the topological neighborhood with paths in the aggregation step of the message-passing procedure. This modification leads to an algorithm that is strictly more expressive than the Weisfeiler-Leman graph isomorphism test, at the cost of a polynomial-time step for every iteration and fixed path length. We support our theoretical findings by empirically evaluating PAIN on synthetic datasets.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
GNNs
en
dc.subject
Paths
en
dc.subject
Expressivity
en
dc.title
No PAIN no Gain: More Expressive GNNs with Paths
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/5429
-
dc.contributor.affiliation
University of Siena, Italy
-
dc.contributor.affiliation
University of Siena, Italy
-
dc.contributor.affiliation
University of Siena, Italy
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
NeurIPS 2023 Workshop: New Frontiers in Graph Learning
-
tuw.peerreviewed
true
-
tuw.relation.publisher
OpenReview.net
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
dc.identifier.libraryid
AC17204350
-
dc.description.numberOfPages
19
-
tuw.author.orcid
0000-0002-7606-9405
-
tuw.author.orcid
0000-0002-4144-7250
-
tuw.author.orcid
0000-0003-1307-0772
-
tuw.author.orcid
0000-0001-5985-9213
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.event.name
NeurIPS 2023 Workshop: New Frontiers in Graph Learning
en
tuw.event.startdate
15-12-2023
-
tuw.event.enddate
15-12-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
New Orleans, LA
-
tuw.event.country
US
-
tuw.event.presenter
Drucks, Tamara
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
University of Siena
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
University of Siena
-
crisitem.author.dept
University of Siena
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.orcid
0000-0002-7606-9405
-
crisitem.author.orcid
0000-0002-4144-7250
-
crisitem.author.orcid
0000-0001-5985-9213
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering