<div class="csl-bib-body">
<div class="csl-entry">Ehrmann, K., Fitzka, M., Ableidinger, K., Berk, O., Baudis, S., & Liska, R. (2023, August). <i>Functional group metamorphosis in the condensed state: A self-reinforcing mechanism to increase mechanical performance of thermoplastic polyurethane materials on demand</i> [Conference Presentation]. ACS Fall 2023, San Francisco, United States of America (the). http://hdl.handle.net/20.500.12708/193677</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193677
-
dc.description.abstract
We show that tuning the kinetics of a dynamic hindered urea bond in polyurethanes to match competitive isocyanate hydrolysis results in the formation of new, unhindered urea bonds upon incubation of the material in water (Figure 1). This significantly increases thermomechanical performance of the pristine material on demand. Most notably, strains at break could be increased up to 10x while elongations at break remained equal or even increased compared to the pristine material, which led us to term the effect “self-reinforcement”.
We have elucidated the mechanism of self-reinforcement in small molecule studies and investigated its matrix-dependent effects on material properties of both, thermoplastic and thermoset materials.
Self-strengthening materials provide a unique opportunity to reconcile the contradicting properties of mechanical performance vs processability and highly porous design of final parts, which is particularly important for highly porous biomedical scaffolds. Here we show the application of self-reinforcing thermoplastic poly(urethane urea) for electrospun biodegradable vascular grafts. Notably, biodegradability of such scaffolds is enhanced compared to reference grafts despite their superior mechanical performance.
en
dc.language.iso
en
-
dc.subject
self-reinforcement
en
dc.subject
thermoplastic polyurethane
en
dc.subject
hindered urea bond
en
dc.title
Functional group metamorphosis in the condensed state: A self-reinforcing mechanism to increase mechanical performance of thermoplastic polyurethane materials on demand
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.type.category
Conference Presentation
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.id
M6
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.name
Biological and Bioactive Materials
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E163-02-1 - Forschungsgruppe Polymerchemie und Technologie
-
tuw.author.orcid
0000-0002-0161-0527
-
tuw.author.orcid
0000-0003-2143-3529
-
tuw.author.orcid
0009-0000-0750-244X
-
tuw.author.orcid
0009-0000-9226-6495
-
tuw.author.orcid
0000-0002-5390-0761
-
tuw.author.orcid
0000-0001-7865-1936
-
tuw.event.name
ACS Fall 2023
en
tuw.event.startdate
13-08-2023
-
tuw.event.enddate
17-08-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
San Francisco
-
tuw.event.country
US
-
tuw.event.institution
American Chemical Society
-
tuw.event.presenter
Ehrmann, Katharina
-
tuw.event.track
Single Track
-
wb.sciencebranch
Chemie
-
wb.sciencebranch
Medizintechnik
-
wb.sciencebranch
Chemische Verfahrenstechnik
-
wb.sciencebranch.oefos
1040
-
wb.sciencebranch.oefos
2060
-
wb.sciencebranch.oefos
2040
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
30
-
wb.sciencebranch.value
20
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper not in proceedings
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cp
-
crisitem.author.dept
E163-02-1 - Forschungsgruppe Polymerchemie und Technologie
-
crisitem.author.dept
E163-02-1 - Forschungsgruppe Polymerchemie und Technologie
-
crisitem.author.dept
E163-02-1 - Forschungsgruppe Polymerchemie und Technologie
-
crisitem.author.dept
E163-02-1 - Forschungsgruppe Polymerchemie und Technologie
-
crisitem.author.dept
E163-02-1 - Forschungsgruppe Polymerchemie und Technologie