<div class="csl-bib-body">
<div class="csl-entry">Lachi, V., Moallemy-Oureh, A., Roth, A., & Welke, P. (2023). Graph Pooling Provably Improves Expressivity. In <i>NeurIPS 2023 Workshop: New Frontiers in Graph Learning</i>. NeurIPS 2023 Workshop: New Frontiers in Graph Learning, New Orleans, LA, United States of America (the). OpenReview.net. https://doi.org/10.34726/5432</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193747
-
dc.identifier.uri
https://doi.org/10.34726/5432
-
dc.description.abstract
In the domain of graph neural networks (GNNs), pooling operators are fundamental to reduce the size of the graph by simplifying graph structures and vertex features. Recent advances have shown that well-designed pooling operators, coupled with message-passing layers, can endow hierarchical GNNs with an expressive power regarding the graph isomorphism test that is equal to the Weisfeiler-Leman test. However, the ability of hierarchical GNNs to increase expressive power by utilizing graph coarsening was not yet explored. This results in uncertainties about the benefits of pooling operators and a lack of sufficient properties to guide their design. In this work, we identify conditions for pooling operators to generate WL-distinguishable coarsened graphs from originally WL-indistinguishable but non-isomorphic graphs. Our conditions are versatile and can be tailored to specific tasks and data characteristics, offering a promising avenue for further research.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
pooling
en
dc.subject
expressivity
en
dc.subject
MPNN
en
dc.title
Graph Pooling Provably Improves Expressivity
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/5432
-
dc.contributor.affiliation
University of Siena, Italy
-
dc.contributor.affiliation
University of Kassel, Germany
-
dc.contributor.affiliation
TU Dortmund University, Germany
-
dc.relation.grantno
ICT22-059
-
dc.type.category
Poster Contribution
-
tuw.booktitle
NeurIPS 2023 Workshop: New Frontiers in Graph Learning
-
tuw.peerreviewed
true
-
tuw.relation.publisher
OpenReview.net
-
tuw.project.title
Structured Data Learning with Generalized Similarities
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.linking
https://openreview.net/forum?id=lR5NYB9zrv
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
dc.identifier.libraryid
AC17204206
-
dc.description.numberOfPages
7
-
tuw.author.orcid
0000-0002-6947-7304
-
tuw.author.orcid
0000-0001-7912-0969
-
tuw.author.orcid
0000-0002-2123-3781
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.event.name
NeurIPS 2023 Workshop: New Frontiers in Graph Learning
en
dc.description.sponsorshipexternal
Ministry of Education and Research of Germany
-
dc.description.sponsorshipexternal
Ministry of Education and Research of Germany
-
dc.relation.grantnoexternal
01IS20047A
-
dc.relation.grantnoexternal
01IS22094E WEST-AI
-
tuw.event.startdate
15-12-2023
-
tuw.event.enddate
15-12-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
New Orleans, LA
-
tuw.event.country
US
-
tuw.event.presenter
Lachi, Veronica
-
tuw.event.presenter
Welke, Pascal
-
tuw.event.track
Single Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference poster
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_6670
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
University of Siena
-
crisitem.author.dept
University of Kassel
-
crisitem.author.dept
TU Dortmund University
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.orcid
0000-0002-6947-7304
-
crisitem.author.orcid
0000-0001-7912-0969
-
crisitem.author.orcid
0000-0002-2123-3781
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds