<div class="csl-bib-body">
<div class="csl-entry">Bause, F., Jogl, F., Welke, P., & Thiessen, M. (2023). Maximally Expressive GNNs for Outerplanar Graphs. In <i>The Second Learning on Graphs Conference (LoG 2023)</i>. Second Learning on Graphs Conference (LoG 2023), Austria. OpenReview.net. https://doi.org/10.34726/5434</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193749
-
dc.identifier.uri
https://doi.org/10.34726/5434
-
dc.description.abstract
Most pharmaceutical molecules can be represented as outerplanar graphs. We propose a graph transformation that makes the Weisfeiler-Leman (WL) test and message passing graph neural networks maximally expressive on outerplanar graphs. While existing research predominantly focuses on enhancing expressivity of graph neural networks beyond the WL test on arbitrary graphs, our goal is to distinguish pharmaceutical graphs specifically. Our approach applies a linear time transformation, building on the fact that biconnected outerplanar graphs can be uniquely identified by their Hamiltonian adjacency list sequences. This pre-processing step can then be followed by any graph neural network. We achieve promising results on molecular benchmark datasets while keeping the pre-processing time low, in the order of seconds for common benchmarks.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Machine Learning
en
dc.subject
Graph Neural Networks
en
dc.title
Maximally Expressive GNNs for Outerplanar Graphs
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/5434
-
dc.contributor.affiliation
University of Vienna, Austria
-
dc.relation.grantno
ICT22-059
-
dc.type.category
Poster Contribution
-
tuw.booktitle
The Second Learning on Graphs Conference (LoG 2023)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
OpenReview.net
-
tuw.project.title
Structured Data Learning with Generalized Similarities
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.linking
https://openreview.net/forum?id=7vyGCFTajk
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
dc.identifier.libraryid
AC17203662
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0003-4202-3692
-
tuw.author.orcid
0000-0002-2123-3781
-
tuw.author.orcid
0000-0001-9333-2685
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.event.name
Second Learning on Graphs Conference (LoG 2023)
en
dc.description.sponsorshipexternal
Vienna Science and Technology Fund (WWTF)
-
dc.relation.grantnoexternal
VRG19-009
-
tuw.event.startdate
27-11-2023
-
tuw.event.enddate
30-11-2023
-
tuw.event.online
Online
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
AT
-
tuw.event.presenter
Bause, Franka
-
tuw.event.presenter
Jogl, Fabian
-
tuw.event.presenter
Welke, Pascal
-
tuw.event.presenter
Thiessen, Maximilian
-
tuw.presentation.online
Online
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference poster
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_6670
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
University of Vienna
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.orcid
0000-0003-4202-3692
-
crisitem.author.orcid
0000-0002-2123-3781
-
crisitem.author.orcid
0000-0001-9333-2685
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds