Toggle navigation
reposiTUm
ABOUT REPOSITUM
HELP
Login
News
Browse by
Publication Types
Organizations
Researchers
Projects
TU Wien Academic Press
Open Access Series
Theses
Digitised Works
Year of Publication
Record link:
http://hdl.handle.net/20.500.12708/193815
-
Title:
Feature engineering to improve classification in LIBS
en
Citation:
Gajarska, Z., Brunnbauer, L., Lohninger, J., & Limbeck, A. (2023). Feature engineering to improve classification in LIBS. In M. Marchetti-Deschmann, E. E. Rosenberg, & V. Weiss (Eds.),
ANAKON 2023: Book of Abstracts
(pp. 439–439). TU Wien.
-
Publication Type:
Inproceedings - Abstract Book Contribution
en
Language:
English
-
Authors:
Gajarska, Zuzana
Brunnbauer, Lukas
Lohninger, Johann
Limbeck, Andreas
-
Organisational Unit:
E164-01-2 - Forschungsgruppe Oberflächen-, Spurenanalytik und Chemometrie
-
Published in:
ANAKON 2023: Book of Abstracts
-
ISBN:
978-3-200-09056-9
-
Date (published):
11-Apr-2023
-
Event name:
ANAKON 2023
en
Event date:
11-Apr-2023 - 14-Apr-2023
-
Event place:
Wien, Austria
-
Number of Pages:
1
-
Publisher:
TU Wien, Vienna
-
Keywords:
LIBS; classification; chemometrics; machine learning
en
Research Areas:
Materials Characterization: 100%
-
Science Branch:
1040 - Chemie: 100%
-
Appears in Collections:
Conference Paper
Show full item record
Google Scholar
TM
Check