<div class="csl-bib-body">
<div class="csl-entry">Huo, X., & Jüngel, A. (2024). Global Existence and Weak-Strong Uniqueness for Chemotaxis Compressible Navier-Stokes Equations Modeling Vascular Network Formation. <i>Journal of Mathematical Fluid Mechanics</i>, <i>26</i>(1), Article 11. https://doi.org/10.1007/s00021-023-00840-5</div>
</div>
-
dc.identifier.issn
1422-6928
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193950
-
dc.description.abstract
A model of vascular network formation is analyzed in a bounded domain, consisting of the compressible Navier-Stokes equations for the density of the endothelial cells and their velocity, coupled to a reaction-diffusion equation for the concentration of the chemoattractant, which triggers the migration of the endothelial cells and the blood vessel formation. The coupling of the equations is realized by the chemotaxis force in the momentum balance equation. The global existence of finite energy weak solutions is shown for adiabatic pressure coefficients γ>8/5. The solutions satisfy a relative energy inequality, which allows for the proof of the weak-strong uniqueness property.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.publisher
Springer
-
dc.relation.ispartof
Journal of Mathematical Fluid Mechanics
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Chemotaxis force
en
dc.subject
Compressible Navier–Stokes equations
en
dc.subject
Global existence of solutions
en
dc.subject
Relative energy
en
dc.subject
Weak–strong uniqueness
en
dc.title
Global Existence and Weak-Strong Uniqueness for Chemotaxis Compressible Navier-Stokes Equations Modeling Vascular Network Formation