<div class="csl-bib-body">
<div class="csl-entry">Pinsker, M. (2023). Constraint Satisfaction Problems: algebraic and model-theoretic challenges to distinguish the easy from the hard. In <i>Book of Abstracts for the Workshop Combinatorial Problems in Model Theory and Computer Science</i> (pp. 6–7).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/193982
-
dc.description.abstract
I will give a gentle introduction to current algebraic and model-theoretic methods in the computational complexity of Constraint Satisfaction Problems (CSPs). A CSP is a computational problem where we are given variables and constraints about them; the question is whether the variables can be assigned values such that all constraints are satisfied. Numerous natural computational problems, such as satisfiability of a given system of equations over a field, are CSPs; in fact, any computational problem is Turing-equivalent to a CSP. Any CSP can be modeled by a relational structure, and conversely every relational structure naturally defines a CSP. In view of humanity’s continuing quest to distinguish easy from hard problems in general, and the class P (polynomial-time solvable problems, e.g. satisfiability of linear equations over a field) from the class NP (polynomial-time verifiable problems, e.g. satisfiability of a propositional formula) in particular, the question arises which mathematical properties of a relational structure make the corresponding CSP easy and which make it hard. It turns out that particular algebraic invariants of the structure often determine the borderline between different complexity classes. Hence algebraic methods, combined with concepts from model theory as well as from Ramsey theory in the case of infinite structures, yield appropriate tools to determine the computational complexity of CSPs.
en
dc.language.iso
en
-
dc.subject
Constraint Satisfaction Problem
en
dc.subject
polymorphism
en
dc.subject
complexity dichotomy
en
dc.subject
canonical function
en
dc.title
Constraint Satisfaction Problems: algebraic and model-theoretic challenges to distinguish the easy from the hard
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.description.startpage
6
-
dc.description.endpage
7
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
Book of Abstracts for the Workshop Combinatorial Problems in Model Theory and Computer Science
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-01 - Forschungsbereich Algebra
-
dc.description.numberOfPages
2
-
tuw.event.name
Workshop Combinatorial Problems in Model Theory and Computer Science 2023
en
tuw.event.startdate
06-11-2023
-
tuw.event.enddate
08-11-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Leeds
-
tuw.event.country
GB
-
tuw.event.institution
University of Leeds
-
tuw.event.presenter
Pinsker, Michael
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
5
-
wb.sciencebranch.value
95
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E104-01 - Forschungsbereich Algebra
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie