<div class="csl-bib-body">
<div class="csl-entry">Sauras Altuzarra, L. (2023). <i>From logic to discrete geometry via lattices</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2024.111390</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2024.111390
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/194134
-
dc.description
Enthält Literaturangaben
-
dc.description.abstract
The author's journal article "Lattice properties of partial orders for complex matrices via orthogonal projectors" utilized lattice theory, the core of algebraic logic, in order to prove several results on the geometry of matrices. More specifically, it contains a study of the different geometric structures that the intervals of complex square matrices get when sorted by three important partial orders in matrix theory (viz., the left-star order, the star order and the core order). The chapter on order-theoretic lattices contains this paper, as well as a complete and finitely axiomatizable foundation of ultrafinitist mathematics and a connection between the arithmetical hierarchy and the irrationality measure.The author's journal articles "Some properties of the factors of Fermat numbers" and "Some applications of Baaz's generalization method to the study of the factors of Fermat numbers" are part of an ongoing research project on the geometry of numbers, which had its origin in Baaz's paper "Note on the generalization of calculations". The common procedure in these articles is the application of a new technique of extractive proof theory, called Baaz's generalization method, to different proofs of compositeness of some concrete Fermat numbers. The information that was extracted from these proofs led to several new results, among which stands out a geometric characterization of the factors of Fermat numbers in terms of point-lattices and of a new concept called cover. The chapter on number-theoretic lattices contains these papers, as well as further investigation on the theory of covers, related results on the factorization of near-square numbers and of Mersenne numbers, an iterative expression of the products of the first consecutive generalized Fermat numbers and a detailed study of a new object, called Hervás-Contreras chain.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Baaz's generalization method
en
dc.subject
factorization
en
dc.subject
Fermat number
en
dc.subject
lattice
en
dc.subject
Peano Arithmetic
en
dc.subject
proof mining
en
dc.title
From logic to discrete geometry via lattices
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2024.111390
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Lorenzo Sauras-Altuzarra
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E104 - Institut für Diskrete Mathematik und Geometrie
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC17087432
-
dc.description.numberOfPages
96
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0001-6893-7463
-
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.languageiso639-1
en
-
item.openairetype
doctoral thesis
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E104-02 - Forschungsbereich Computational Logic
-
crisitem.author.orcid
0000-0001-6893-7463
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie