<div class="csl-bib-body">
<div class="csl-entry">Hüpfl, J., Bachelard, N., Kaczvinszki, M., Horodynski, M. A., Kühmayer, M., & Rotter, S. (2023). Multi-Particle Active Feedback Cooling Using Shaped Wave-Fronts. In <i>Exploiting Levitated Particles in the Quantum Regime</i> (pp. 30–30).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/194245
-
dc.description.abstract
Levitated particles offer a unique and controlled platform for precise investigations of various physical effects while minimizing external influences. The potential to perform high-precision force sensing experiments and explore quantum phenomena using cooled particles has emerged as an intriguing possibility. However, to fully unlock the complexity and capabilities of these systems, the simultaneous trapping and cooling of a large number of particles is crucial. This poses a challenge as existing techniques rely on controlled environments, making the scaling up to larger systems challenging due to intricate interactions between individual particles. Here, we propose a novel multi-particle cooling approach utilizing a generalization of the Wigner-Smith time-delay operator [1,2]. By establishing a connection between the eigenvalues of this operator and system changes, we leverage advancements in spatial light modulators to introduce an active feedback cooling scheme. Our scheme utilizes far-field information from the electromagnetic field to generate a sequence of customized input wave-fronts, which simultaneously cool the translational and rotational center-of-mass motion for all particles in parallel. Remarkably, our approach decouples the degrees of freedom of the field from those of the particles, naturally leading to good scaling properties. To validate the scalability of our approach, we conducted numerical simulations demonstrating its effectiveness across a wide range of particle numbers, sizes, and shapes. Based on these findings, we propose an experimental implementation wherein continuously shaped wave-fronts cool an ensemble of levitated objects, with the goal to observe and analyze the cooling effects in a practical setting using state of the art equipment.
References
[1] J. Hüpfl, N. Bachelard, M. Kaczvinszki, M. Horodynski, M. Kühmayer, S.
Rotter, Phys. Rev. Lett. 130, 083203(2023)
[2] J. Hüpfl, N. Bachelard, M. Kaczvinszki, M. Horodynski, M. Kühmayer, S.
Rotter, Phys. Rev. A. 107, 023112(2023)
en
dc.language.iso
en
-
dc.subject
optomechanics
en
dc.title
Multi-Particle Active Feedback Cooling Using Shaped Wave-Fronts
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.description.startpage
30
-
dc.description.endpage
30
-
dc.type.category
Abstract Book Contribution
-
tuw.booktitle
Exploiting Levitated Particles in the Quantum Regime
-
tuw.researchTopic.id
Q1
-
tuw.researchTopic.name
Photonics
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E136 - Institut für Theoretische Physik
-
tuw.publication.orgunit
E322-01 - Forschungsbereich Strömungsmechanik
-
dc.description.numberOfPages
1
-
tuw.author.orcid
0000-0002-2953-5872
-
tuw.author.orcid
0000-0002-4123-1417
-
tuw.event.name
Exploiting Levitated Particles in the Quantum Regime: 794. WE-Heraeus-Seminar 2023
en
tuw.event.startdate
04-09-2023
-
tuw.event.enddate
08-09-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Bad Honnef
-
tuw.event.country
DE
-
tuw.event.presenter
Hüpfl, Jakob
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1030
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E136 - Institut für Theoretische Physik
-
crisitem.author.dept
E136 - Institut für Theoretische Physik
-
crisitem.author.dept
E322-01 - Forschungsbereich Strömungsmechanik
-
crisitem.author.dept
E136 - Institut für Theoretische Physik
-
crisitem.author.dept
E136 - Institut für Theoretische Physik
-
crisitem.author.dept
E136 - Institut für Theoretische Physik
-
crisitem.author.orcid
0000-0002-2953-5872
-
crisitem.author.orcid
0000-0002-4123-1417
-
crisitem.author.parentorg
E130 - Fakultät für Physik
-
crisitem.author.parentorg
E130 - Fakultät für Physik
-
crisitem.author.parentorg
E322 - Institut für Strömungsmechanik und Wärmeübertragung