<div class="csl-bib-body">
<div class="csl-entry">Bekbulatova, V., Morichetta, A., & Dustdar, S. (2023). FL-SERENADE: Federated Learning for SEmi-supeRvisEd Network Anomaly DEtection. A Case Study. In <i>2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech)</i> (pp. 1072–1079). IEEE. https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361504</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/194545
-
dc.description.abstract
The use of connected devices in the industry represents a necessity and, at the same time, a challenge. Building a network of interconnected industry assets can improve performance and scale but can lead to dangerous security risks and attacks. However, the amount of data shared, and the widespread distribution of devices make the protection of industrial resources cumbersome. One problem is to know the type of information flowing and check for anomalies, making the job of anomaly-based Intrusion Detection Systems (IDSs) arduous. In this direction, we explore a semi-supervised approach, 'Deep-SAD,' to overcome the partial knowledge of the data. Due to the size of the data, and the need for privacy measures, we combine this model with a federated learning (FL) framework 'Flower,' distributing the learning phase through five industrial areas. We evaluate our implementation over the WUSTL-IIoT-2021 dataset, a testbed simulation of an actual plant where threats have been injected. This work presents and evaluates a framework for semi-supervised anomaly detection, starting with feature engineering. The results reveal that the difference in the performance of the federated and centralized settings is minimal, denoting the promising application of the federated approach. Combined with the security and privacy-preserving characteristics of FL, this demonstrates the value of the federated approach to the semi-supervised anomaly-based IDS in the IIoT networks.
en
dc.language.iso
en
-
dc.subject
DoS attacks
en
dc.subject
Federated Learning
en
dc.subject
Internet of Things (IoT)
en
dc.subject
Security and Privacy
en
dc.title
FL-SERENADE: Federated Learning for SEmi-supeRvisEd Network Anomaly DEtection. A Case Study
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
979-8-3503-0461-9
-
dc.relation.doi
10.1109/DASC/PiCom/CBDCom/Cy59711.2023
-
dc.relation.issn
2837-0724
-
dc.description.startpage
1072
-
dc.description.endpage
1079
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2837-0740
-
tuw.booktitle
2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.1109/DASC/PiCom/CBDCom/Cy59711.2023.10361504
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0003-3765-3067
-
tuw.author.orcid
0000-0001-6872-8821
-
tuw.event.name
IEEE Cyberscience Congress (DASC/CYBERSCITECH/PiCoM/CBDCOM), ADNEC Special Session on Distributed Machine Learning for Edge/Fog Computing: Challenges and Future Directions at IEEE PICom 2023
en
tuw.event.startdate
14-11-2023
-
tuw.event.enddate
17-11-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Abu Dhabi
-
tuw.event.country
AE
-
tuw.event.presenter
Morichetta, Andrea
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0000-0003-3765-3067
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering