<div class="csl-bib-body">
<div class="csl-entry">Holland, K., Ipp, A., Müller, D., & Wenger, U. (2023). Fixed point actions from convolutional neural networks. In <i>Proceedings of Science (PoS)</i>. 40th International Symposium on Lattice Field Theory (Lattice 2023), Fermilab, Batavia, Illinois, United States of America (the). https://doi.org/10.48550/ARXIV.2311.17816</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/194607
-
dc.description.abstract
Lattice gauge-equivariant convolutional neural networks (L-CNNs) can be used to form arbitrarily shaped Wilson loops and can approximate any gauge-covariant or gauge-invariant function on the lattice. Here we use L-CNNs to describe fixed point (FP) actions which are based on renormalization group transformations. FP actions are classically perfect, i.e., they have no lattice artifacts on classical gauge-field configurations satisfying the equations of motion, and therefore possess scale invariant instanton solutions. FP actions are tree-level Symanzik-improved to all orders in the lattice spacing and can produce physical predictions with very small lattice artifacts even on coarse lattices. We find that L-CNNs are much more accurate at parametrizing the FP action compared to older approaches. They may therefore provide a way to circumvent critical slowing down and topological freezing towards the continuum limit.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
Convolutional Neural Networks
en
dc.subject
Lattice Gauge Theory
en
dc.title
Fixed point actions from convolutional neural networks
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of the Pacific, United States of America (the)
-
dc.contributor.affiliation
University of Bern, Switzerland
-
dc.relation.grantno
P 32446-N27
-
dc.relation.grantno
P 34455-N
-
dc.relation.grantno
P 34764-N
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of Science (PoS)
-
tuw.project.title
Glasma-Simulationen mit maschinellem Lernen hochskalieren