<div class="csl-bib-body">
<div class="csl-entry">De Sloover, L., Gevaers, R., Dewulf, W., Beckers, J., Van Gelder, F., Huang, H., & Van de Weghe, N. (2023). Early Insights into Location-Allocation Decision-Making using Ensemble Learning. In <i>Proceedings of the 18th International Conference on Location Based Services</i> (pp. 142–148). https://doi.org/10.34726/5724</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/194733
-
dc.identifier.uri
https://doi.org/10.34726/5724
-
dc.description.abstract
The COVID-19 pandemic underscored the significance of geography in health emergencies, spotlighting the need for optimized spatial decision-making. This paper introduces a novel, data-driven approach to spatial decision-making, leveraging gradient boosting to derive datainformed weights for a Weighted Linear Combination (WLC). The goal is to pinpoint optimal locations for vaccination centres in Flanders, Belgium. Drawing from prior work, we present a foundation for the required number of centres, and then focus on determining the most suitable locations within Flanders. Utilizing a dataset of 91 centres, our ensemble learning technique dynamically determines criteria weights. Criteria that are sociodemographic or mobility oriented are considered. Our methodology, termed Ensemble Analysis for Criteria Trade-offs (ENACT), offers a comprehensive framework, targeting dynamic location-allocation scenarios. Using derived weights, we identify regions with the highest suitability scores for vaccination center placement. The high model performance metrics underline its reliability, with caution on potential overfitting. The study comes with a roadmap for enhancing the methodology's comprehensiveness in future research, suggesting the integration of more criteria and GIS optimization techniques for actionable health infrastructure planning.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Multi-Criteria Decision Analysis
en
dc.subject
Gradient Boosting
en
dc.subject
COVID-19 Vaccination Strategy
en
dc.title
Early Insights into Location-Allocation Decision-Making using Ensemble Learning
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/5724
-
dc.contributor.affiliation
Ghent University, Belgium
-
dc.contributor.affiliation
University of Antwerp, Belgium
-
dc.contributor.affiliation
University of Antwerp, Belgium
-
dc.contributor.affiliation
University of Antwerp, Belgium
-
dc.contributor.affiliation
University of Antwerp, Belgium
-
dc.contributor.affiliation
Ghent University, Belgium
-
dc.contributor.affiliation
Ghent University, Belgium
-
dc.relation.doi
10.34726/5400
-
dc.description.startpage
142
-
dc.description.endpage
148
-
dc.rights.holder
Authors
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 18th International Conference on Location Based Services
-
tuw.relation.ispartof
10.34726/5400
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E000 - Technische Universität Wien
-
dc.identifier.libraryid
AC17203624
-
dc.description.numberOfPages
7
-
tuw.author.orcid
0000-0001-6066-814X
-
tuw.author.orcid
0000-0002-6982-1937
-
tuw.author.orcid
0000-0002-1900-2247
-
tuw.author.orcid
0000-0003-1900-7037
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.event.name
18th International Conference on Location Based Services (LBS 2023)